K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2022

b: tan a=2

nên a=63 độ

c: Tọa độ giao của (d1) và (d2) là:

2x+3=-x+4 và y=2x+3

=>x=1/3 và y=2/3+3=8/3

Thay x=1/3 và y=8/3 vào (d3), ta được:

1/3m+m-1=8/3

=>4/3m=11/3

=>m=11/3:4/3=11/3*3/4=11/4

NM
25 tháng 3 2022

Để hai đường thẳng song song mà không trùng nhau thì điều kiện cần và đủ là : 

\(\hept{\begin{cases}m=1\\3m+2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\m\ne-\frac{1}{3}\end{cases}\Leftrightarrow}m=1}\)

a: (d)'//(d) nên (d'): y=-3x+b

Thay x=1 và y=2 vào (d'), ta được:

b-3=2

=>b=5

=>y=-3x+5

b: PTHĐGĐ là;

mx^2+3x-1=0

Để (d) cắt (P) tại hai điểm phân biệt nằm về cùng một phía so với trục tung thì

(-3)^2-4*m*(-1)>0 và -1/m>0

=>m<0 và 9+4m>0

=>m<0 và m>-9/4

=>-9/4<m<0

7 tháng 1 2021

a) y = 2x - 3

Cho x = 0 \(\Rightarrow\) y = -3 \(\Rightarrow\) A(0; -3)

Cho y = 0 \(\Rightarrow\) \(x=\dfrac{3}{2}\) \(\Rightarrow\) B\(\left(\dfrac{3}{2};0\right)\)

undefined

b) ĐKXĐ của (d'): \(m^2-2\ne0\)

\(\Leftrightarrow m\ne\sqrt{2}\)\(m\ne-\sqrt{2}\)

Để (d) // (d') thì

\(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\)

\(\Leftrightarrow m=2\) (nhận)

Vậy m = 2 thì (d) // (d')

28 tháng 3 2020

để (d) song song zới đường thẳng (d') 

=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)

b)phương trình hoành độ giao điểm của (d) zà (P)

\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)

ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)

để d cắt P tại hai điểm phân biệt 

=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)

lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)

để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)

từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương