Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử hình vuông ABCD có tâm O và cạnh a, chứa năm hình tròn không cắt nhau và đều có bán kính bằng 1
Vì cả năm hình tròn này đều nằm trọn trong hình vuông nên các tâm của chúng nằm trong hình vuông \(A'B'C'D'\)có tâm O và cạnh \(a-2\), ở đây \(A'B'//AB\)
Các đường thẳng nối các trung điểm cùa các cạnh đối diện của hình vuông \(A'B'C'D'\)chia \(A'B'C'D'\)thành 4 hình vuông nhỏ
Theo nguyên lí Dirichlet tồn tại một trong 4 hình vuông nhỏ mà trong hình vuông này chứa ít nhất hai trong số 5 tâm hình tròn nói trên (không mất tính tổng quát ta giả sử là \(O'\)và \(O''\))
Để ý rằng vì không có hai hình tròn nào (trong số năm hình tròn) cắt nhau nên \(O'O''\ge2\)
Mặt khác do \(O'\)và\(O''\)cùng nằm trong một hình vuông nhỏ (cạnh của hình vuông nhỏ đó bằng \(\frac{a-2}{2}\)) nên ta lại có \(O'O''\le\frac{a-2}{2}.\sqrt{2}\). Từ đó ta suy ra được\(\frac{a-2}{2}.\sqrt{2}\ge2\Rightarrow a\ge2\sqrt{2}+2\)
Vậy mọi hình vuông cạnh a thỏa mãn yêu cầu đề bài, ta đều có \(a\ge2\sqrt{2}+2\)
Bây giờ xét hình vuông \(ABCD\)có \(a=2\sqrt{2}+2\)
Xét năm hình tròn có tâm là \(O,A',B',C',D'\)thì mọi yêu cầu của đề bài thỏa mãn.
Tóm lại, hình vuông có kích thước bé nhất cần tìm là hình vuông với cạnh \(a=2\sqrt{2}+2\)
Nếu khoảng cách giữa hai điểm bất kì đều bé hơn 1 thì ta chỉ cần chọn 1 điểm \(A\) bất kì trong số 2001 điểm đã cho, rồi vẽ đường tròn \(\left(A,1\right)\), đường tròn này sẽ chứa cả 2000 điểm còn lại, do đó ta có đpcm.
Gỉa sử rằng có hai điểm \(A,B\) trong số 2001 điểm đã cho mà có khoảng cách lớn hơn \(1\). Vẽ các đường tròn tâm là \(A,B\) và bán kính cùng là \(1\). Ta còn lại 1999 điểm. Mỗi điểm \(C\) bất kì trong số 1999 điểm ấy, theo giả thiết \(AB,AC,BC\) phải có một đoạn có độ dài bé hơn \(1\). Vì \(AB>1\) nên \(AC
Gọi \(2n+1\) điểm đó là \(A_1,A_2,...,A_{2n+1}\). Do số điểm là hữu hạn nên tồn tại 1 đoạn thẳng \(A_iA_j\left(i\ne j\right)\) sao cho \(A_iA_j\) lớn nhất trong các \(A_kA_l\left(k\ne l;k,l=\overline{1,2n+1}\right)\).
TH1: Nếu \(A_iA_j\le1\), ta dựng 2 đường tròn \(\left(A_i,1cm\right)\) và \(\left(A_j,1cm\right)\). Dĩ nhiên nếu có bất kì điểm \(A_m\) nào nằm ngoài 2 đường tròn trên thì mâu thuẫn với giả thiết \(A_iA_j\) là đoạn thẳng có độ dài lớn nhất. Do đó, tất cả \(2n+1\) điểm sẽ nằm trong 2 đường tròn. Theo nguyên lí Dirichlet sẽ tồn tại 1 hình tròn chứa \(n+1\) điểm trong \(2n+1\) điểm đã cho. Đó là hình tròn cần tìm.
TH2: Nếu \(A_iA_j>1\), ta vẫn dựng 2 đường tròn \(\left(A_i,1cm\right)\) và \(\left(A_j,1cm\right)\). Khi đó nếu có bất kì điểm \(A_m\) nào nằm ở ngoài cả 2 hình tròn thì \(A_mA_i\) và \(A_mA_j\) đều lớn hơn 1. Khi đó bộ 3 điểm \(\left(A_i,A_j,A_m\right)\) mâu thuẫn với giả thiết trong 3 điểm bất kì luôn có 2 điểm có khoảng cách nhỏ hơn 1. Do vậy, tất cả các điểm đã cho đều nằm trong 2 đường tròn kể trên. Lại theo nguyên lí Dirichlet thì tồn tại \(n+1\) điểm thuộc cùng một hình tròn. Đấy chính là hình tròn cần tìm.
Vậy trong mọi trường hợp, ta đều tìm được 1 hình tròn bán kính 1cm chứa \(n+1\) điểm trong số \(2n+1\) điểm đã cho. Ta có đpcm.
Mình giải thích thêm trường hợp 1 nhé. Nếu như có 1 điểm \(A_m\) nằm ngoài 1 trong 2 đường tròn \(\left(A_i,1\right)\) và \(\left(A_j,1\right)\) thì 1 trong 2 đoạn \(A_mA_i\) và \(A_mA_j\) sẽ lớn hơn 1. Không mất tính tổng quát, giả sử đó là đoạn \(A_mA_i\). Khi đó \(A_mA_i>1\ge A_iA_j\), vô lí vì ta đã giả sử \(A_iA_j\) là đoạn có độ dài lớn nhất.
Trên mặt phẳng cho n > = điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng