K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

Gọi x, y, z lần lượt là số học sinh đạt loại giỏi một môn, hai môn và ba môn. Lập sơ đồ Ven liên hệ giữa các tập hợp, ta có hệ phương trình:

x + y + z = 45 − 7 x + 2 y + 3 z = 20 + 18 + 17 z = 5 ⇔ x = 26 y = 7 z = 5.

Vậy số học sinh đạt loại giỏi một môn là 26 em.

Đáp án B

7 tháng 11 2021

\(\text{Gọi x là số học sinh biết chơi cả hai môn đá cầu và cầu lông. }\)

\(\text{Theo đề, ta có: }\)

\(\text{+Số học sinh chỉ biết chơi mỗi đá cầu là: }25-x\)

\(\text{+Số học sinh chỉ biết chơi mỗi cầu lông là: }20-x\)

\(\text{Vậy, số học sinh biết chơi cả hai môn đá cầu và cầu lông là: }\)
\(25-x+20-x+x=36\Leftrightarrow x=9\left(HS\right)\)
 

16 tháng 10 2021

9

22 tháng 10 2021

Số học sinh biết chơi cả đá cầu và cầu lông là: \(25+20-36=9\left(hs\right)\)

22 tháng 10 2021

Coppy mạng mà ko để í cop bị lỗi sao???

3 tháng 11 2021

Gọi A là tập hợp các học sinh biết chơi đá cầu và B là tập hợp các học sinh biết chơi cầu lông.Kí hiệu n(A), n(B) các tập hợp A, B. Khi đó:

+)n(A∩B) là số học sinh Bích cho cả hai môn thể thao đá cầu vượt cầu lông 

+)n(A ∪ B) là số học sinh biết chơi ít nhất một trong hai môn

Mặt khác từ biểu đồ ven ở trên sẽ thấy

n(A∪B) = n(A)+ n(B)- n(A∩B)

=>n (A∩B)=9

Vậy lúc mới a có 9 học sinh biết chơi cả 2 đá cầu và cầu lông