Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Trục Ox có vecto chỉ phương là u → =(1;0;0) và A B → =(-2;2;1)
Mà (P) chứa A, B và (P)//Ox
⇒ n ( P ) → = u → . A B → = ( 0 ; - 1 ; 2 )
Vậy phương trình mặt phẳng (P) là:
y-2z+2=0
Đáp án D
Phương pháp :
Đường thẳng qua A song song với hai mặt phẳng (P), (Q)
Cách giải :
lần lượt là các VTPT của (P), (Q)
Ta có :
=(0;0;-1)
=> u → = ( 0 ; 0 ; 1 ) là 1 VTCP của đường thẳng qua A và vuông góc với cả (P), (Q)
Vậy phương trình đường thẳng cần tìm là:
Với t =-3 ta có đường thẳng đi qua điểm B(1;2;0) =>phương trình đường thẳng cần tìm là :
Đáp án D
Phương pháp: Giả sử đường thẳng (d) cắt trục Oz tại điểm B(0;0;b)
Cách giải:
Giả sử đường thẳng (d) cắt trục Oz tại điểm B(0;0;b)
Chọn B
Gọi B (0;0;b) là giao điểm của đường thẳng d và trục Oz.
Vì đường thẳng d song song với mặt phẳng (P) nên:
Chọn A
Gọi A(a;0;0);B(0;b;0);C(0;0;c)
Phương trình mặt phẳng (P) có dạng:
Vì M là trực tâm của tam giác ABC nên:
Khi đó phương trình (P): 3x+2y+z-14=0.
Vậy mặt phẳng song song với (P) là: 3x+2y+z+14=0.
Chọn B