K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

Ta có:  Đường thẳng (d) qua hai điểm M, N có phương trình tham số 

Gọi I là hình chiếu vuông góc của K lên đường thẳng (d) => I (-t; -1 + 2t; 2 + t). Khi đó ta có 

20 tháng 11 2019

Đáp án B

Ta có  M N :   x = t y = - 1 - 2 t z = 2 - t .  

Gọi  H(t;-1-2t;2-t) là hình chiếu vuông góc của K lên MN

Khi đó

  H K → = ( t ; - 1 - 2 t ; - t ) .   M N → ( - 1 ; 2 ; 1 ) = 0

⇔ t - 2 - 4 t - t = 0 ⇔ t = - 1 3

H K → = ( t ; - 1 - 2 t ; - t ) .   M N → ( - 1 ; 2 ; 1 ) = 0

⇒ H - 1 3 ; - 1 3 ; 7 3 .   T a   c ó   d ( K ; ( P ) ) ≤ K H

dấu “=” xảy ra  khi KH  ⊥ (P)

Khi đó

  n → = K H → = - 1 3 ; - 1 3 ; 1 3 = - 1 3 ( 1 ; 1 ; - 1 )

4 tháng 11 2018

Đáp án C

Vì OA, OB, OC đôi một vuông góc với nhau  1 d 2 = 1 O A 2 + 1 O B 2 + 1 O C 2

Với d là khoảng cách từ  O  -> (ABC) suy ra  1 d 2 = 1 a 2 + 1 b 2 + 1 c 2

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức, ta có     x 2 a + y 2 b + z 2 c ≥ x + y + z 2 a + b + c

Vậy  d   m a x   = 1 3

12 tháng 5 2019

Đáp án B

Phương pháp: (P) cách đều  B, C

TH1: BC//(P)

TH2: I ∈ (P)với I là trung điểm của BC.

Cách giải:

(P) cách đều B, C

TH1: BC//(P)

=> (P) đi qua O và nhận  b → = ( 6 ; - 3 ; - 4 ) là 1 VTPT

TH2: I(P) với I là trung điểm của BC.

Dựa vào các đáp án ta chọn được đáp án B.

9 tháng 9 2017

Chọn D

Ta có x + my + (2m + 1)z – m – 2 = 0 <=> m(y + 2z -1) + x + z - 2 = 0 (*)

Phương trình (*) có nghiệm với

Suy ra (P) luôn đi qua đường thẳng 

14 tháng 2 2018

Chọn A

Gọi (Q) là mặt phẳng đi qua M (2;2; -3) và song song với mặt phẳng (P).

Suy ra (Q):2x+y+z-3=0.

Do Δ // (P) nên Δ (Q)).

D (N, Δ) đạt giá trị nhỏ nhất ó Δ đi qua N', với N' là hình chiếu của N lên (Q).

Gọi d là đường thẳng đi qua N và vuông góc (P), 

Ta có N’ d => N' (-4+2t;2+t;1+t); N’ (Q) => t = 4/3

  cùng phương 

Do |a|, |b| nguyên tố cùng nhau nên chọn 

Vậy  |a| + |b| + |c| = 15.

18 tháng 11 2018

Đáp án B.

Khoảng cách từ M đến (P) là:

16 tháng 12 2017

Đáp án C.