Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Mặt phẳng (ABC) đi qua B (1; 0; -1) và có một véctơ pháp tuyến là:
Phương trình mặt phẳng (ABC): 5x + 2y - z - 6 = 0
Độ dài đường cao xuất phát từ đỉnh D (0; 0; d) của tứ diện ABCD bằng d(D, (ABC))
Theo bài ra ta có:
Do D thuộc tia Oz nên D (0; 0; 3).
\(\overrightarrow{AB}=\left(1;2;3\right)\) ; \(\overrightarrow{AC}=\left(-3;3;3\right)\) ; \(\overrightarrow{AD}=\left(-1;3;1\right)\)
\(V_{ABCD}=\dfrac{1}{6}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right].\overrightarrow{AD}\right|=4\)
Chọn D
Trên cạnh AB, AC , AD của tứ diện ABCD lần lượt có các điểm B', C', D'. Áp dụng công thức tỷ số thể tích ta có
Từ giả thiết
áp dụng bất đẳng thức AM- GM ta có
Do thể tích ABCD cố định nên thể tích AB'C'D' nhỏ nhất
=> (B'C'D') song song với (BCD) và đi qua điểm B'
suy ra vectơ pháp tuyến của mặt phẳng (B'C'D') là:
Vậy phương trình (B'C'D') là:
Chọn C
Ta có G(1;0;2), ta tìm hình chiếu của G lên mặt phẳng (P) bằng cách tìm giao điểm của đường thẳng qua G vuông góc với mặt phẳng (P) với mặt phẳng (P).
Phương trình đường thẳng qua điểm G và vuông góc với mặt phẳng (P)
Đáp án B.
Ta có:
Từ đó gọi M là trung điểm của CD ta có
Do đó chu vi ∆ A B M là
(vì AB không thay đổi), tức là khi M là trung điểm cuả CD hay M(0;1;-1)
Chọn đáp án A