Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từng bài 1 thôi bạn!
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K
a) Xét tam giác AEC và tam giác ADB
có:
\(\widehat{AEC}=\widehat{ADB}=90^o\)
\(\widehat{EAC}=\widehat{DAB}\)( đối đỉnh)
=> \(\Delta AEC~\Delta ADB\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\Rightarrow AE.AB=AD.AC\)
b) Xét tam giác HCB có hai đường cao CD và BE cắt nhau tại A
=> A là trực tâm tam giác ACB
=> HA vuông BC
=> AF vuông BC
Xét tứ giác BFEH có:
\(\widehat{BFH}=\widehat{HEB}=90^o\)
=> BFEH nội tiếp
c) Ta có: \(\widehat{EOC}=2\widehat{EBC}\)( góc ở tâm có độ lớn gấp 2 lần góc nội tiếp cùng chắn một cung)
Xét tứ giác ADBF có: \(\widehat{ADB}+\widehat{AFB}=90^o+90^o=180^o\)
=> ADBF nội tiếp
=> \(\widehat{ABF}=\widehat{ADF}\)( cùng chắn cung AF) hay \(\widehat{EBC}=\widehat{CDF}\)
Mặt khác \(\widehat{EDC}=\widehat{EBC}\)( cùng chắn cung EC)
=> \(\widehat{EOC}=2.\widehat{EBC}=\widehat{CDF}+\widehat{EDC}=\widehat{EDF}\)
=> \(\widehat{FOE}+\widehat{FDE}=\widehat{FOE}+\widehat{EOC}=180^o\)( hai góc bù nhau)
=> Tứ giác DEOF nội tiếp