Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi pt đường thẳng AB có dạng \(y=ax+b\)
Do đường thẳng AB qua A và B nên ta có:
\(\left\{{}\begin{matrix}2a+b=3\\-a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Phương trình AB: \(y=2x-1\) \(\Rightarrow\) hệ số góc \(a=2\)
b. Thay tọa độ C vào pt AB:
\(-1=2.0-1\) (thỏa mãn)
\(\Rightarrow C\) thuộc đường thẳng AB hay 3 điểm A;B;C thẳng hàng
a: Thay x=0 và y=9 vào (d), ta được:
\(b+6\cdot0=9\)
hay b=9
Vậy: (d): y=6x+9
b: Phương trình hoành độ giao điểm là:
\(ax^2-6x-9=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot a\cdot\left(-9\right)=36a+36\)
Để (d) tiếp xúc với (P) thì 36a+36=0
hay a=-1
`a)` Vì `(d)` đi qua `M(0;9)` nên thay `x=0` và `y=9` vào `(d)` có: `b=9`
`b)` Với `b=9=>(d):y=6x+9`
Xét ptr hoành độ của `(d)` và `(P)` có:
`ax^2=6x+9`
`<=>ax^2-6x-9=0` `(1)`
Để `(d)` tiếp xúc với `(P)` thì ptr `(1)` có nghiệm kép
`<=>\Delta' =0`
`<=>(-3)^2-a.(-9)=0`
`<=>a=-1` (t/m)
Gọi d: y = ax + b là đường thẳng đi qua hai điểm A, B.
Ta có \(\left\{{}\begin{matrix}2a+b=1\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-3\\b-a=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\).
Do đó đường thẳng đi qua A, B là y = -x + 3.
Thay x = 3 vào ta được y = 0 nên C(3; 0) thuộc đường thẳng đó
a. Hệ số góc của đường thẳng: \(a=\dfrac{y_B-y_A}{x_B-x_A}=\dfrac{4-2}{3-1}=2\)
b. Gọi hàm số có dạng \(y=ax+b\Rightarrow a=1\)
\(\Rightarrow y=x+b\)
Do đồ thị hàm số qua A nên:
\(1+b=2\Rightarrow b=1\)
Vậy hàm số có dạng: \(y=x+1\)
a) gọi đường thẳng đi qua \(A;B\) có dạng : \(\left(d\right):y=cx+d\)
vì \(A;B\in\left(d\right)\) \(\Rightarrow\left\{{}\begin{matrix}ac+d=0\\d=b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}d=b\\c=\dfrac{-d}{a}=\dfrac{b}{a}\end{matrix}\right.\)
\(\Rightarrow\left(d\right):y=\dfrac{b}{a}x+b\)
b) để \(A;B;C\) thẳng hàng \(\Leftrightarrow C\in\left(d\right)\)
\(\Leftrightarrow\dfrac{b}{a}+b=2\Leftrightarrow b\left(\dfrac{1}{a}+1\right)=2\)
c) từ \(b\left(\dfrac{1}{a}+1\right)=2\Leftrightarrow b=\dfrac{2a}{a+1}\)
ta có : \(A\in Ox\) và \(B\in Oy\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}\sqrt{a^2}\sqrt{b^2}=\dfrac{1}{2}ab=\dfrac{1}{2}a\dfrac{2a}{a+1}\)
\(=\dfrac{a^2}{a+1}=S\)
\(\Leftrightarrow a^2-Sa-S=0\) phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\)
\(\Leftrightarrow S^2+4S\ge0\Leftrightarrow S\left(S+4\right)\ge0\Leftrightarrow S\ge0\)
dấu "=" xảy ra khi \(a=0\) ; \(b=0\)
saint suppapong udomkaewkanjana ĐP Nhược Giang Nguyễn Thanh Hằng Ngô Kim Tuyền Ngô Thành Chung Mysterious Person Mashiro Shiina Fa Châu De DDTank JakiNatsumi