K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 3 2021

Do d qua K nên pt d có dạng: \(y=kx-k+3\) (với \(k\ne0;3\))

Gọi A và B lần lượt là giao điểm của d với Ox; Oy

\(\Rightarrow\left\{{}\begin{matrix}A\left(\dfrac{k-3}{k};0\right)\\B\left(0;-k+3\right)\end{matrix}\right.\)

Để A; B có hoành độ dương (do nằm trên các tia Ox; Oy) \(\Rightarrow k< 0\)

Khi đó: \(OA=\dfrac{k-3}{k}\) ; \(OB=-k+3\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=6\Leftrightarrow\dfrac{\left(k-3\right)\left(-k+3\right)}{k}=12\)

\(\Leftrightarrow k^2+6k+9=0\Leftrightarrow k=-3\)

Phương trình d: \(y=-3x+6\)

19 tháng 3 2021

1,\(\overrightarrow{n}\)d=(2;-4)   

d:  2(x+1)-4(y-1)=0⇔2x-4y+6=0

2) AM nhỏ nhất khi AM vuông góc với D

\(\overrightarrow{n}\)AM=(4;2)

AM:  4(x+1)+2(y-1)=0⇔4x+2y+2=0

M=AM\(\cap\)D⇒Tọa độ điểm M là nghiệm của hệ:2x-4y=-1

                                                                        4x+2y=-2

⇒M(-1/2;0)

20 tháng 3 2021

cảm ơn nà

31 tháng 5 2021

1.

\(\left(C\right):x^2+y^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)

Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)

Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)

Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)

\(\Leftrightarrow m=-1\pm\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)

31 tháng 5 2021

2.

Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)

\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)

a: Vì (d)//x-4y+5=0 nên (d): x-4y+c=0

Thay x=1 và y=0 vào (d), ta được:

c+1=0

=>c=-1

=>x-4y-1=0

b: Vì (d) vuông góc x-4y+5=0

nên (d): 4x+y+c=0

Thay x=1 và y=0 vào (d), ta được:

c+4=0

=>c=-4

=>4x+y-4=0

16 tháng 1 2020

Gọi đt ( d) là\(ax+by=0\)(*)

+ Vì đt (d) qua M nên: x=1 và y=3 thay vào(*) có:\(a+3y=0\) (**)

+ Vì đt (d) song song với đt (◇) nên \(a//6\)\(b=-4\) thay vào (**) có:

\(a+3\left(-4\right)=0\)

\(\rightarrow a=12\)

Vậy đt (d) có dạng \(12x+3y=0\)

16 tháng 1 2020

ta có phương trình \(\left(\Delta\right)\) <=> \(y=\frac{3}{2}x+\frac{1}{4}\)

vì (d) //\(\left(\Delta\right)\) --> \(\left(\Delta\right)y=\frac{3}{2}x+b\) điều kiện là \(b\ne\frac{1}{4}\)

vì (d) qua M nên \(3=\frac{3}{2}+b\Leftrightarrow b=\frac{3}{2}\)

\(\Rightarrow\left(\Delta\right)y=\frac{3}{2}x+\frac{3}{2}\Leftrightarrow3x-2y+3=0\)

vậy \(\left(\Delta\right)3x-2y+3=0\)

NV
4 tháng 5 2019

Đường tròn (C) tâm \(I\left(-1;4\right)\) bán kính \(R=5\)

Do d' song song d nên pt d' có dạng: \(3x+y+c=0\)

Áp dụng định lý Pitago ta có:

\(d\left(I;d'\right)=\sqrt{R^2-3^2}=4\)

\(\Rightarrow\frac{\left|-1.3+4+c\right|}{\sqrt{3^2+1^2}}=4\Leftrightarrow\left|c+1\right|=4\sqrt{10}\Rightarrow\left[{}\begin{matrix}c=4\sqrt{10}-1\\c=-4\sqrt{10}-1\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x+y+4\sqrt{10}-1=0\\3x+y-4\sqrt{10}-1=0\end{matrix}\right.\)

7 tháng 5 2019

chỗ\(\sqrt{R}\) R2 - 32 ấy cậu. 3 ở đâu vậy ạ?