K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2015

c) Tam giác MIB vuông cân tại M nên góc MIB = 450 => góc AIB = 1350, mà AB cố định => I nằm trên cung chứa góc 1350 dựng trên đoạn AB( tính cả 2 đầu A và B)

25 tháng 4 2022

Cứu em

4 tháng 3 2022

a, Xét tứ giác CDME có 

^MEC = ^MDC = 900

mà 2 góc này kề, cùng nhìn cạnh MC 

Vậy tứ giác CDME là tứ giác nt 1 đường tròn 

b, bạn ktra lại đề 

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc vớiGọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại KXác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo RBài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ...
Đọc tiếp

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất

1

Bài 4:

a: 

Xét (O) có

ΔCED nội tiếp

CD là đường kính

=>ΔCED vuông tại E

ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

Xét tứ giác CEMF có

I là trung điểm chung của CM và EF

CM vuông góc EF

=>CEMF là hình thoi

=>CE//MF

=<MF vuông góc ED(1)

Xét (O') có

ΔMPD nội tiêp

MD là đường kính

=>ΔMPD vuông tại P

=>MP vuông góc ED(2)

Từ (1), (2) suy ra F,M,P thẳng hàng

b: góc IPO'=góc IPM+góc O'PM

=góc IEM+góc O'MP

=góc IEM+góc FMI=90 độ

=>IP là tiếp tuyến của (O')

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.b/ CM: EM = EFc/ Gọi I là tâm đường tròn ngoại tiếp...
Đọc tiếp

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.

a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.

b/ CM: EM = EF

c/ Gọi I là tâm đường tròn ngoại tiếp tam giác DMF. CM góc ABI có số đo không đổi khi M di động trên cung \(\widebat{BD}\)

Bài 2: Cho tam giác đều ABC nội tiếp trong đường tròn (O). Một đường thẳng d thay đổi đi qua A, cắt (O) tại điểm thứ hai là E, cắt hai tiêp tuyến kẻ từ B và C của đường tròn (O) lần lượt tại M và N sao cho A,M,N nằm ở cùng nửa mặt phẳng bờ BC. Gọi giao điểm của hai đường thẳng MC và BN tại F. CMR:

a/ Hai tam giác MBA và CAN dồng dạng và tích MB.CN không đổi.

b/ Tứ giác BMEF nội tiếp trong một đường tròn.

c/ Đường thẳng EF luôn đi qua một điểm cố định khi (d) thay đổi.

0
29 tháng 5 2022

1.\(\Delta OMH\perp H\) ( không đổi )

\(\Rightarrow\widehat{OMH}+\widehat{HOM}=90^o\)

Ta có: I là tâm đường tròn nội tiếp \(\Delta OMH\)

\(\Rightarrow\widehat{OMI}=\widehat{HMI}=\dfrac{\widehat{OMH}}{2}\)

\(\Rightarrow\widehat{MOI}=\widehat{HOI}=\dfrac{\widehat{MOH}}{2}\)

\(\Delta OIM\) có: \(\widehat{OIM}=180^o-\left(\widehat{OMI}+\widehat{MOI}\right)\)

                   \(\Leftrightarrow\) \(\widehat{OIM}=180^o-\left(\dfrac{\widehat{OMH}}{2}+\dfrac{\widehat{MOH}}{2}\right)\)

                     \(\Leftrightarrow\widehat{OIM}=180^o-\dfrac{90^o}{2}=135^o\)

Xét \(\Delta OIB\) và \(\Delta OIM\), có:

\(OB=OM\left(=R\right)\)

\(\widehat{MOI}=\widehat{BOI}\) ( OI là tia phân giác \(\widehat{MOH}\) )

`OI`: chung

Vậy\(\Delta OIB\) = \(\Delta OIM\) ( c.g.c )

\(\Rightarrow\widehat{OIB}=\widehat{OIM}\) ( 2 góc tương ứng )

\(\Rightarrow\widehat{OIB}=135^o\) ( không đổi )

2. \(\Delta OMH\perp H\)

\(\Rightarrow S_{OMH}=\dfrac{1}{2}.OH.MH\)

Áp dụng BĐT AM-GM, ta có:

\(\sqrt{OH^2.MH^2}\le\dfrac{OH^2+MH^2}{2}\)

\(\Leftrightarrow\dfrac{1}{2}.OH.MH\le\dfrac{1}{2}.\dfrac{OH^2+MH^2}{2}\)

\(\Leftrightarrow\dfrac{1}{2}.OH.MH\le\dfrac{1}{2}.\dfrac{OM^2}{4}\) ( pytago )

\(\Leftrightarrow S_{OMH}\le\dfrac{R^2}{4}\)

\(\rightarrow\)\(S_{OMH}\) lớn nhất là \(\dfrac{R^2}{4}\) không đổi

Dấu "=" xảy ra khi:

\(OH^2=MH^2\)

\(\Rightarrow OH=MH\)

\(\Rightarrow\Delta OMH\) vuông cân tại `H` \(\Rightarrow\widehat{MOH}=\widehat{OMH}=45^o=\widehat{MOC}\)

\(\Rightarrow\)`M` nằm giữa của \(\stackrel\frown{AB}\) thì \(S_{OMH}\) đạt GTNN là \(\dfrac{R^2}{4}\)

29 tháng 5 2022

eyy bài không biết đăng lên đây hẽ?:"))