Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 +3 + .... + 198 + 199
Dãy số trên có tất cả số số hạng là :
( 199 - 1 ) : 1 + 1 = 199 ( số )
Tổng của dãy số trên là :
( 199 + 1 ) x 199 : 2 = 19 900
Giải :
\(S=1+2+3+...+198+199\)
Dãy đó có tất cả số hạng là :
\(\left(199-1\right)\div1+1=199\) (số)
Tổng các số hạng của dãy số đó là :
\(\left(199+1\right)\times199\div2=19900\) (đv)
Đ/s : ..........
ta có: \(S=1+1\times2+2\times3+3\times4+...+38\times39+39\times40+40\)
\(\Rightarrow3S=1\times3+1\times2\times3+2\times3\times3+...+39\times40\times3+40\times3\)
\(3S=3+1\times2\times\left(3-0\right)+2\times3\times\left(4-1\right)+...+39\times40\times\left(41-38\right)+120\)
\(3S=3+1\times2\times3+2\times3\times4-1\times2\times3+...+39\times40\times41-38\times39\times40+120\)
\(3S=\left(3+1.2.3+...+39.40.41+120\right)-\left(1.2.3+...+38.38.40\right)\)
\(3S=3+39.40.41+120\)
\(\Rightarrow S=\left(3+39.40.41+120\right):3\)
\(S=21361\)
Ta có: \(M=\left(4^{10}+4^{11}\right)+\left(4^{12}+4^{13}\right)+...+\left(4^{198}+4^{199}\right)\)
\(=4^{10}.\left(1+4\right)+4^{12}.\left(1+4\right)+...+4^{198}.\left(1+4\right)\)
\(=4^{10}.5+4^{12}.5+...+4^{198}.5\)
\(=5.\left(4^{10}+4^{12}+...+4^{198}\right)\text{chia hết cho 5}\)
=> M chia hết cho 5
=> M là B(5) => đpcm.
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)
\(2A=1-\frac{1}{3^8}\)
\(A=\frac{1}{2}-\frac{1}{2.3^8}\)
Số số hạng là :
(199-1) : 1 + 1= 199 ( số số hạng )
Tổng là :
199 . ( 199 + 1 ) : 2 = 19900
vậy tổng S = 19900
Số số hạng là:
\(\left(199-1\right)\div1+1=199\) ( số hạng )
Tổng của dãy số trên là:
\(\left(199+1\right).199\div2=19990\)