Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối
ta được :
( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )
= 99/1.98+99/2.97+...+99/49.50
gọi các thừa số phụ là k1, k2, k3, ..., k49 thì
A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49) x 2.3.4....97.98
= 99.(k1+k2+...+k49)
=> A chia hết cho 49 (1)
b)
Cộng 96 p/s theo từng cặp :
a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)
.................................................. ( làm tiếp nhé )
mỏi woa
Ta thấy
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)
\(A=2.3.4...98+3.4.5....98+2.4.5....98+...+2.3.4....97\)(phá ngoặc)
=> A là số dương
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)
Trong 2.3.4.....98 có 11.9 = 99 nên A chia hết cho 99
b) Khi quy đồng mẫu lên tính B thì b là tích từ 2 đến 96(mẫu số chung)
Ta sẽ có:
B = \(\frac{a}{2.3.....96}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{96}\)
=>\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{96}\right)2.3.4....96\)
Bạn CMTT như câu a là cũng ra
Chúc bạn học tốt
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
Bài 1:
E = \(\dfrac{1+\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}\)
E = \(\dfrac{\dfrac{100}{100}+\dfrac{100}{99}+...+\dfrac{100}{2}}{\dfrac{1}{100}+\dfrac{1}{99}+...+\dfrac{1}{2}}\)
E = \(\dfrac{100\cdot\left(\dfrac{1}{100}+\dfrac{1}{99}+...+\dfrac{1}{2}\right)}{\dfrac{1}{100}+\dfrac{1}{99}+...+\dfrac{1}{2}}\)
E = 100
Ta có:
F = \(\dfrac{\left(1-\dfrac{1}{7}\right)+\left(1-\dfrac{2}{8}\right)+...+\left(1-\dfrac{94}{100}\right)}{\dfrac{1}{35}+\dfrac{1}{40}+...+\dfrac{1}{500}}\)
F = \(\dfrac{\dfrac{6}{7}+\dfrac{6}{8}+...+\dfrac{6}{100}}{\dfrac{1}{35}+\dfrac{1}{40}+...+\dfrac{1}{500}}\)
F = \(\dfrac{6\cdot\left(\dfrac{1}{7}+\dfrac{1}{8}+...+\dfrac{1}{100}\right)}{\dfrac{1}{5}\cdot\left(\dfrac{1}{7}+\dfrac{1}{8}+...+\dfrac{1}{100}\right)}\)
F = 6 : 1/5
F = 30
=> E - 2F = 100 - 30*2
= 100 - 60
= 40
Vậy E - 2F = 40
Ta có:
1/50 + 1/99 = 149/50.99
1/51 +1/98 = 149/51.98
...
1/74 +1/75=149/74.75
=> a/b =149*[1/50.99 +..+1/74.75]
Quy đồng mẫu số vế phải ta được;
a/b =149.k /[50.51.....99]
Tuy nhiên do 149 là số nguyên tố nên 50.51..99 không chia hết cho 149
=> a= 149p, với p là số đã ước lược với các số dưới mẫu số
=> a chia hết cho 149
\(Ta\)\(có:\)
\(\frac{1}{50}\)\(+\)\(\frac{1}{99}\)\(=\frac{149}{50.99}\)
\(\frac{1}{51}+\frac{1}{98}=\frac{149}{51.98}\)
\(...\)
\(\frac{1}{74}+\frac{1}{75}=\frac{149}{74.75}\)
\(\Rightarrow\frac{a}{b}=149\)*\([\frac{1}{50.99}+...+\frac{1}{74.75}]\)
Quy đồng mẫu số vế phải ta được :
\(\frac{a}{b}=149.k/\left[50.51...99\right]\)
Tuy nhiên do 149 là số nguyên tố nên 50.51...99 ko chia hết cho 149
\(\Rightarrow a=149p,với\)\(p\)là số đã ước lược với các số dưới mẫu số
\(\Rightarrow a\)chia hết cho \(149\)
\(\text{Ta có:}\)
\(B=1+3+3^2+3^3+3^4+3^5+3^6+3^7+.......+3^{96}+3^{97}+3^{98}+3^{99}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+.....+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(=40+\left[3^4\left(1+3+3^2+3^3\right)\right]+.....+\left[3^{96}\left(1+3+3^2+3^3\right)\right]\)
\(=40+3^4\cdot40+....+3^{96}\cdot40\)
\(=40\left(1+3^4+....+3^{96}\right)\)
\(\Rightarrow B⋮40\)
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12