K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2015

\(S=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{20^2}\right)\)

\(S=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{399}{20^2}\)

\(S=\frac{1.3.2.4.3.5......19.21}{2.2.3.3.4.4.....20.20}\)

\(S=\frac{\left(1.2.3.....19\right).\left(3.4.5.....21\right)}{\left(2.3.4....20\right)\left(2.3.4....20\right)}\)

\(S=\frac{21}{20.2}\)

\(S=\frac{21}{40}\)

2 tháng 4 2023

1+1=3 :)))

14 tháng 5 2017

Bài này hơi khó hiểu xíu. Thông cảm nha babe:v

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+.......+\frac{1}{20}\left(1+2+3+....+20\right)\)

\(B=1+\left(\frac{1}{2}+1\right)+2+\left(\frac{1}{2}+2\right)+3+\left(\frac{1}{2}+3\right)+.....+10+\left(\frac{1}{2}+10\right)\)(chỗ này là nhân phân phối vô đấy!)

\(B=\left(1+2+3+....+10\right)+\left(1+2+3+...+10\right)+\left(\frac{1}{2}.10\right)\)

\(B=55+55+5=115\)

2 tháng 8 2015

\(1+\frac{1}{2}.\left(1+2\right)+\)\(\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+...+\frac{1}{16}.\left(1+2+3+...+16\right)\)

=\(\frac{2}{2}+\frac{3}{2}+\frac{6}{3}+...+\frac{136}{16}\)

=\(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{17}{2}\)

=\(\frac{2+3+4+5+6+...+17}{2}\)=\(\frac{152}{2}=76\)

9 tháng 11 2018

Ta có:

\(1+\frac{1}{2}\left(1+2\right)+..........+\frac{1}{20}\left(1+2+3+.......+20\right)\)

\(=1+\frac{1}{2}\left(\frac{3.2}{2}\right)+\frac{1}{3}\left(\frac{4.3}{2}\right)+........+\frac{1}{20}\left(\frac{21.20}{2}\right)\)

\(=1+\frac{3}{2}+\frac{4}{2}+..........+\frac{21}{2}=\frac{2+3+4+........+21}{2}\)

\(=\frac{\frac{23.20}{2}}{2}=\frac{23.10}{2}=115\)

22 tháng 4 2017

\(1.\)\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)

\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)

\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{6}-\frac{1}{7}\)

\(M=1-\frac{1}{7}=\frac{6}{7}\)

Mình làm câu 1 thoi nha!

22 tháng 4 2017

1.

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)

=\(1-\frac{1}{7}\)

=\(\frac{6}{7}\)

28 tháng 10 2019

a)\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{20}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)

\(A=\frac{1.2.3...19}{2.3.4...20}\)

\(A=\frac{1}{20}\)

14 tháng 4 2019

\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)

\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)

\(\Rightarrow T=\frac{1004}{1005}\)

14 tháng 4 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)

\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\frac{2010}{2011}\)

\(\Rightarrow A=\frac{1005}{2011}\)