Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\Rightarrow A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)
\(\Rightarrow A=\frac{1}{5}+\frac{2}{7}\)
\(\Rightarrow A=\frac{17}{35}\)
b)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{56}-\frac{1}{61}\right)\)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(\Rightarrow B=5.\frac{50}{671}=\frac{250}{671}\)
c)
\(\Rightarrow C=1-\left(\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+....+\frac{1}{49.25}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{49.50}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow C=1-1-\frac{1}{25}\)
\(\Rightarrow C=\frac{1}{25}\)
a, 1 - 7x = 3x - 4
=> -7x - 3x = - 4 - 1
=> - 10x = - 5
=> x = 1/2
vậy_
b, đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3A-A=1-\frac{1}{3^{99}}\)
\(A=\frac{1-\frac{1}{3^{99}}}{2}\)
mk chỉ bt lm mấy phần hui à!
d)\(\frac{5}{17}+\frac{-4}{7}-\frac{20}{31}+\frac{12}{17}-\frac{11}{31}\)\(=\left(\frac{5}{17}+\frac{12}{17}\right)+\left(\frac{-20}{31}-\frac{11}{31}\right)+\frac{-4}{7}\)
\(=\frac{17}{17}+\frac{-31}{31}+\frac{-4}{7}\)\(=1+\left(-1\right)+\frac{-4}{7}\)\(=0+\frac{-4}{7}\)\(=-\frac{4}{7}\)
e)\(\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{20}{7}-\frac{13}{3}+\frac{13}{23}}\)
a) \(A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{\frac{5}{11}-\frac{5}{13}-\frac{5}{17}}+\frac{\frac{2}{3}-\frac{2}{9}-\frac{2}{27}+\frac{2}{81}}{\frac{7}{3}-\frac{7}{9}-\frac{7}{27}+\frac{7}{81}}\)
\(=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)
\(=\frac{1}{5}+\frac{2}{7}\)
\(=\frac{7}{35}+\frac{10}{35}\)
\(=\frac{17}{35}\)
Vậy \(A=\frac{17}{35}\)
b) \(B=\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}+...+\frac{5^2}{56.61}\)
\(=5.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{56.61}\right)\)
\(=5.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}\right)\)
\(=5.\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(=5.\left(\frac{61}{671}-\frac{11}{671}\right)\)
\(=5.\frac{50}{671}\)
\(=\frac{250}{671}\)
Vậy \(B=\frac{250}{671}\)
a)|-10|:(-2):(-5)+(-3)2
=1+9
=10
b)1+(-2)+3+(-4)+5+(-6)+...+21+(-22)
=[1+(-2)]+[3+(-4)]+[5+(-6)]+...+[21+(-22]
=(-1)+(-1)+(-1)+...+(-1)
Mà từ 1 đến 22 có:(22-1):1+1:2=11(cặp)
Suy ra:1+(-2)+3+(-4)+5+(-6)+...+21+(-22)=(-11)
c)\(\frac{3}{4}.\frac{5}{9}+\frac{3}{4}.\frac{4}{9}\)
\(=\frac{3}{4}.\left(\frac{5}{9}+\frac{4}{9}\right)\)
\(=\frac{3}{4}\)
d)\(-\frac{4}{17}+\frac{5}{19}+-\frac{13}{17}+\frac{14}{19}+\frac{3}{115}\)
\(=\left[\left(-\frac{4}{17}\right)+\left(-\frac{13}{17}\right)\right]+\left(\frac{5}{19}+\frac{4}{19}\right)+\frac{3}{115}\)
\(=\left(-\frac{27}{17}\right)+1+\frac{3}{115}\)
\(=-\frac{1099}{1955}\)
e)\(\left(\frac{3}{4}+-\frac{7}{2}\right).\left(\frac{10}{11}+\frac{2}{22}\right)\)
\(=\left(\frac{3}{4}-\frac{14}{4}\right).\left(\frac{20}{22}+\frac{2}{22}\right)\)
\(=\left(-\frac{11}{4}\right).\left(\frac{22}{22}\right)\)
\(=-\frac{11}{4}\)
a) \(\frac{-77}{143}+\frac{65}{143}-\frac{66}{143}+\frac{7}{22}\)
= \(\frac{-78}{143}+\frac{7}{22}\)= \(\frac{-6}{11}+\frac{7}{22}\)= \(\frac{-12}{22}+\frac{7}{22}\)
= \(\frac{-5}{22}\)
b) \(\frac{-4}{5}-\frac{20}{170}+\frac{51}{170}+\frac{150}{170}\)= \(\frac{-4}{5}-\frac{221}{170}\)
\(\frac{-4}{5}-\frac{13}{10}\)= \(\frac{-8}{10}-\frac{13}{10}\)=\(\frac{-21}{10}\)