Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
Bn HACK NICK FRÉ FIRE đừng bình luận linh tinh nhé !
- Hok tốt !
^_^
Ta có:
\(A=1+2.6+3.6^2+4.6^3+...+100.6^{99}\)
=> \(6A=6+2.6^2+3.6^3+....+99.6^{99}+100.6^{100}\)
=> A - 6A = \(1+6+6^2+6^3+...+6^{99}-100.6^{100}\)
=> \(-5A=1+6+6^2+...+6^{99}-100.6^{100}\)
Đặt: \(B=1+6+6^2+...+6^{99}\)
=> \(6B=6+6^2+6^3+...+6^{100}\)
=> 6 B - B = \(6^{100}-1\)
=> B = \(\frac{6^{100}-1}{5}\)
=> \(-5A=\frac{6^{100}-1}{5}-100.6^{100}\)
=> \(A=\frac{499.6^{100}+1}{25}\)
Bài 1:
a) Ta có: \(\dfrac{7^4\cdot3-7^3}{7^4\cdot6-7^3\cdot2}\)
\(=\dfrac{7^3\cdot\left(7\cdot3-1\right)}{7^3\cdot2\left(7\cdot3-1\right)}\)
\(=\dfrac{1}{2}\)
c) Ta có: \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
\(\Leftrightarrow\dfrac{1}{3}\cdot E=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E-\dfrac{1}{3}\cdot E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)
\(\Leftrightarrow E\cdot\dfrac{2}{3}=1-\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E=\dfrac{3-\dfrac{3}{3^{101}}}{2}=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)
\(P=\dfrac{\left(1+2+3+...+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63\cdot1,2-21\cdot3,6\right)}{1-2+3-4+5-6+...+99-100}\)
đề là vậy nhé mn
để ý chút thấy liền ah : 63.1,2-21.3,6=63.1,2-21.3.1,2= 63.1,2- 63.1,2=0
=============================
Ta có P = \(\dfrac{\left(1+2+3+...+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+5-...+99-100}\)= \(\dfrac{\left(1+2+3+...+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)0}{1-2+3-4+5-...+99-100}\)= \(\dfrac{0}{1-2+3-4+5-6+...+99-100}=0\)
a)
\(5A=5+5^2+.....+5^{101}\)
\(\Rightarrow5A-A=\left(5+5^2+.....+5^{101}\right)-\left(1+5+.....+5^{100}\right)\)
\(\Rightarrow4A=5^{101}-1\)
\(\Rightarrow A=\frac{5^{101}-1}{4}\)
b)
\(2B=1+\left(\frac{1}{2}\right)^2+....+\left(\frac{1}{2}\right)^{100}\)
\(\Rightarrow2B-B=\left(1+\frac{1}{2^2}+.....+\frac{1}{2^{100}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{99}}\right)\)
\(\Rightarrow B=1-\frac{1}{2^{100}}\)
a: \(=\dfrac{2^5\cdot3^5\cdot2^{12}\cdot2^{16}\cdot5^{16}}{2^{30}\cdot3^{10}\cdot5^{16}}=\dfrac{2^{33}\cdot3^5}{2^{30}\cdot3^{10}}=\dfrac{8}{243}\)
c: \(=\dfrac{4^7\cdot3^{12}\cdot5^4+3^{12}\cdot5^6\cdot4^7}{2^{14}\cdot3^{14}\cdot5^4+2^{14}\cdot3^{14}\cdot5^6}\)
\(=\dfrac{2^{14}\cdot3^{12}\cdot5^4\left(1+25\right)}{2^{14}\cdot3^{14}\cdot5^4\left(1+25\right)}=\dfrac{1}{9}\)
3/4.8/9.15/16......9999/10000
= 3.8.15.....9999/4.9.16......10000
=101/50