Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2014.2015}\)
\(=1\left(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{2014.2015}\right)\)
\(=1\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=1\left(1-\frac{1}{2015}\right)\)
\(=1\left(\frac{2015}{2015}-\frac{1}{2015}\right)-1\left(\frac{2014}{2015}\right)=\frac{2014}{2015}\)
Vậy.....
\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+....+\frac{4}{2014.2015}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2014}-\frac{1}{2015}\)
\(A=\frac{1}{1}-\frac{1}{2015}=\frac{2015}{2015}-\frac{1}{2015}=\frac{2014}{2015}\)
\(A=\frac{4}{1.2}+\frac{4}{2.3}+...+\frac{4}{2014.2015}\)
\(A=4\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2014.2015}\right)\)
\(A=4\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(A=4\left(\frac{1}{1}-\frac{1}{2015}\right)\)
\(A=4\left(\frac{2015-1}{2015}\right)\)
\(A=4.\frac{2014}{2015}\)
... BẠN TỰ LÀM NỐT NHÉ!
\(\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+...+\frac{4}{2014\cdot2015}\)
\(=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2014\cdot2015}\right)\)
\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=4\left(1-\frac{1}{2015}\right)\)
\(=4\cdot\frac{2014}{2015}=\frac{8056}{2015}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}\)
\(=\frac{2014}{2015}\)
A=1/1-1/2+1/2-1/3+1/3-...........+1/2014-1/2015
A=1/1-1/2015
A=2014/2015
1.
a. \(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)
\(=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=5.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=5.\left(1-\frac{1}{100}\right)\)
\(=5.\frac{99}{100}\)
\(=\frac{99}{20}\)
b. \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)
\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{4}{2}.\left(1-\frac{1}{101}\right)\)
\(=2.\frac{100}{101}\)
\(=\frac{200}{101}\)
dấu bằng của mk bt liệt nên bạn thông cảm
A bằng (1.2.3.4).(1.2.3.4)/(1.2.3.4).(2.3.4.5) bằng 5
rút gọn cho nhau bạn nhé
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}=\frac{1}{5}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}=\frac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\frac{1}{5}\)
\(A=4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\)
\(=4\cdot\dfrac{2014}{2015}=\dfrac{8056}{2015}\)
`A=4/(1.2)+4/(2.3)+4/(3.4)+......+4/(2014.2015)`
`=4(1/(1.2)+1/(2.3)+1/(3.4)+......+1/(2014.2015))`
`=4(1-1/2+1/2-1/3+1/3-1/4+....+1/2014-1/2015)`
`=4(1-1/2015)`
`=4. 2014/2015`
`=8056/2015`
A=4.(1/1.2+1/2.3+...+1/2014.2015)
A=4.(1-1/2+1/2-1/3+...+1/2014-1/2015)
A=4.(1-1/2015)
A=4.2014/2015
A=8056/2015