Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}\)
\(=2\times\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}+\dfrac{1}{192}\right)\)
\(=2\times\left(\dfrac{64+32+16+8+4+2+1}{192}\right)\)
\(=\dfrac{127}{96}\)
2/3+2/6+2/12+2/24+2/48+2/96+2/192
=2/3+1/3+1/6+1/12+1/24+1/48+1/96
=\(\dfrac{64+32+16+8+4+2+1}{96}\)
=\(\dfrac{127}{96}\)
\(\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+...+\frac{2}{192}.\)
\(=2\times\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{192}\right)\)
\(=2\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}+...+\frac{1}{96}-\frac{1}{192}\right)\)
\(=2\times\left(1-\frac{1}{192}\right)\)
\(=2\times\frac{191}{192}=\frac{191}{68}\)
\(\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+...+\frac{2}{192}\)
\(=\frac{1}{3.1}+\frac{1}{3.2}+\frac{1}{3.2^2}+...+\frac{1}{3.2^6}\)
\(=\frac{1}{3}.\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)
\(=\frac{1}{3}.A\)với \(A=\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\)
\(\Rightarrow2A=2.\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)
\(\Rightarrow2A=2+\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2^5}\)
\(\Rightarrow2A-A=\left(2+\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2^5}\right)-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)
\(\Rightarrow A=2-\frac{1}{2^6}=2-\frac{1}{64}=\frac{127}{64}\)
\(\Rightarrow\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+...+\frac{2}{192}=\frac{1}{3}.\frac{127}{64}=\frac{127}{192}\)
\(\frac{1999x1999}{1995x1995_{ }}=\frac{1999^2}{1995^2}=\left(\frac{1999}{1995}\right)^2\)\(>1^2\)\(=1\)
127/96 nhé
nếu sai bạn sửa cho mình nhé
thank you
mình cảm ơn trước
2/3+2/6+2/12+2/24+2/48+2/96+2/192
=2/3+1/3+1/6+1/12+1/24+1/48+1/96
=\(\frac{64+32+16+8+4+2+1}{96}=\frac{127}{96}\)
Ta có:
\(S=\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}+\dfrac{2}{384}\\ =\dfrac{2}{3}+\dfrac{2}{2\times3}+\dfrac{2}{2\times6}+\dfrac{2}{2\times12}+\dfrac{2}{2\times24}+\dfrac{2}{2\times48}+\dfrac{2}{2\times96}+\dfrac{2}{2\times192}\\ =\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}+\dfrac{1}{192}\\ \)
\(\dfrac{S}{2}=\dfrac{1}{2}\left(\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}+\dfrac{2}{384}\right)\\ =\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}+\dfrac{1}{192}+\dfrac{1}{384}\)
\(S-\dfrac{S}{2}=\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}+\dfrac{1}{192}-\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}+\dfrac{1}{192}+\dfrac{1}{384}\right)\\ =\dfrac{2}{3}-\dfrac{1}{384}=\dfrac{2\times128-1}{384}\\ =\dfrac{85}{128}\\ \Rightarrow S=\dfrac{85}{128}\times2=\dfrac{85}{64}\)
\(A=\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}+\dfrac{2}{384}\)
\(A.2=\dfrac{4}{3}+\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}\)
\(A=A.2-A=\dfrac{4}{3}-\dfrac{2}{384}=\dfrac{127}{96}\)
\(\frac{127}{96}\)nha bạn nhớ k cho mik nhé
\(\frac{127}{96}\)