K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{u}{6}=\dfrac{x+y+z+u}{2+5+7+6}=\dfrac{7820}{20}=391\)

Do đó: x=782; y=1955; z=2737; u=2346

\(x-2y+3z-4u=782-2\cdot1955+3\cdot2737-4\cdot2346=-4031\)

6 tháng 3 2020

Tinh x - 2y + 3z - 4u,

biet x, y, z, u TLT voi 2, 5, 7, 6

va x + y + z + u = 7820

22 tháng 6 2023

Bài `10`

`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`

ADTC dãy tỉ số bằng nhau ta có :

`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`

`=> x/2=2=>x=2.2=4`

`=>y/3=2=>y=2.3=6`

`b,` Ta có : `2x=5y=>x/5=y/2`

ADTC dãy tỉ số bằng nhau ta có :

`x/5=y/2=(x+y)/(5+2)=-42/7=-6`

`=>x/5=-6=>x=-6.5=-30`

`=>y/2=-6=>y=-6.2=-12`

Bài `11`

`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`

ADTC dãy tỉ số bằng nhau ta có :

`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`

`=>x/3=2=>x=2.3=6`

`=>y/4=2=>y=2.4=8`

`=>z/6=2=>z=2.6=12`

Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`

`d,` Ta có :

`x/2=y/3=>x/4=y/6`

`y/2=z/3=>y/6=z/9`

`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`

ADTC dãy tỉ số bằng nhau ta có :

`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`

`=>x/4=1=>x=1.4=4`

`=>y/6=1=>y=1.6=6`

`=>z/9=1=>z=1.9=9`

11 tháng 11 2021

Ta có:\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x}{3}=\dfrac{2y}{2.4}=\dfrac{3z}{3.6}\)

Áp dung tcdtsbn , ta có: 

\(\dfrac{x}{3}=\dfrac{2y}{2.4}=\dfrac{3z}{3.6}=\dfrac{x+2y-3z}{3+8-18}=\dfrac{-14}{-7}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=8\\z=12\end{matrix}\right.\)

11 tháng 11 2021

áp dụng t/c dtsbn ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x+2y-3z}{3+2.4-3.6}=\dfrac{-14}{-7}=2\)

\(\dfrac{x}{3}=2\Rightarrow x=6\\ \dfrac{y}{4}=2\Rightarrow y=8\\ \dfrac{z}{6}=2\Rightarrow z=12\)

8 tháng 11 2018

TH1: a+b+c  khác 0

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow a=b=c\)

thay a=b=c vào B ta có:

\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)

TH2: a+b+c=0

=> c=-a-b

=>a=-b-c

=>b=-a-c

thay a,b,c vào B ta có:

\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)

\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)

p/s: th2 ko chắc nhá