Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) (2x + 1)3 = 125
=> (2x + 1)3 = 53
=> 2x + 1 = 5
=> 2x = 5 - 1
=> 2x = 4
=> x = 2
b) (x - 5)4 = (x - 5)6
Với hai mũ khác nhau , ta chỉ có thể tìm được giá trị biểu thức bằng 1 hoặc 0 (giá trị của chúng bằng nhau)
+) (x - 5)4 = (x - 5)6 = 0
=> (x - 5)4 = 0
=> (x - 5)4 = 04
=> x - 5 = 0 => x = 0 + 5 = 5
+) (x - 5)4 = (x- 5)6 = 1
=> (x - 5)4 = 1
=> (x - 5)4 = 14
=> x - 5 = 1
=> x = 1 + 5
=> x = 6
Bài 4 :
a3 . a9 = a3 + 9 = a12
(a5)7.(a6)4 .a12 = a35 . a24 . a12 = a35 + 24 + 12 = a71
4.52 - 2.32 = 4.25 - 2.9
= 100 - 18
= 82
(x-1)^2:5^21=25^30.5
(x-1)^2=25^30.5.5^21
=(5^2)^30.5^22
= 5^60.5^22
(x-1)^2 =5^82
(x-1)^2=(5^41)^2
x-1=5^41
x=5^41+1
2.3^x+1=10.3^12+8:3^12
2.3^x+1=10+8=18
3^x+1=18/2=9
3^x+1=3^2
x+1=2
x=1
Bài 1:
a) \(8^5\cdot8^2=8^7\)
b) \(9^3\cdot3^2=\left(3^2\right)^3\cdot3^2=3^6\cdot3^2=3^8\)
c) \(2^7\cdot5^7=10^7\)
d) \(27^6:3^3=\left(3^3\right)^6:3^3=3^{18}:3^3=3^{15}\)
Bài 2:
a) \(x^6:x^3=125\)
\(\Rightarrow x^3=125\)
\(\Rightarrow x=5\)
b) \(x^{20}=x\)
\(\Rightarrow x^{20}-x=0\)
\(\Rightarrow x\left(x^{19}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{19}-1=0\Rightarrow x=1\end{matrix}\right.\)
c) \(3^x\cdot3=243\)
\(\Rightarrow3^x=81\)
\(\Rightarrow x=4\)
d) \(2x-138=2^3\cdot3^2\)
\(\Rightarrow2x-138=72\)
\(\Rightarrow2x=200\)
\(\Rightarrow x=100\)
Giải:
Bài 1:
a) \(8^5.8^2=8^{5+2}=8^7\)
b) \(9^3.3^2=3^6.3^2=3^{6+2}=3^8\)
c) \(2^7.5^7=\left(2.5\right)^7=10^7\)
d) \(27^6:3^3=3^{18}:3^3=3^{18-3}=3^{15}\)
Bài 2:
a) \(x^6:x^3=x^{6-3}=x^3=125\)
\(\Leftrightarrow x=5\)
b) \(x^{20}=x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)
c) \(3^x.3=243\)
\(\Leftrightarrow3^{x+1}=243\)
\(\Leftrightarrow3^{x+1}=3^5\)
\(\Leftrightarrow x+1=5\Leftrightarrow x=4\)
d) \(2.x-138=2^3.3^2\)
\(\Leftrightarrow2.x-138=8.9\)
\(\Leftrightarrow2.x-138=72\)
\(\Leftrightarrow2.x=72+138\)
\(\Leftrightarrow2.x=210\Leftrightarrow x=105\)
Chúc bạn học tốt!
ta có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{7^2}< \frac{1}{6.7}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{7^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{6.7}\)
mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{6.7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
vi \(8^{100}< 9^{100}\)nen \(2^{300}< 3^{200}\)
72 - 7 . ( 13 . x ) =14
=> 49 - 7.( 13.x) = 14
=> 7.(13.x) = 49 -14 = 35
=> 13.x = 35 : 7 = 5
=> x = 5 : 13
=> x = 5/13
9 x 55 : ( 57 : 54 ) + 23 x 5
= 9 x 55 : 53 + 8 x 5
= 9 x 52 + 40
= 225+40
= 265
7 × 3 mu x + 20 × 3 mu x = 3 mu 25