Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{1}{2018!\left(2019-2018\right)!}+\dfrac{1}{2016!\left(2019-2016\right)!}+...+\dfrac{1}{2!\left(2019-2\right)!}+\dfrac{1}{0!\left(2019-0!\right)}\)
\(\Rightarrow2019!.S=\dfrac{2019!}{2018!\left(2019-2018\right)!}+\dfrac{2019!}{2016!\left(2019-2016\right)!}+...+\dfrac{2019!}{2!\left(2019-2\right)!}+\dfrac{2019!}{0!\left(2019-0\right)!}\)
\(=C_{2019}^{2018}+C_{2019}^{2016}+...+C_{2019}^2+C_{2019}^0\)
\(=\dfrac{1}{2}\left(C_{2019}^0+C_{2019}^1+...+C_{2019}^{2018}+C_{2019}^{2019}\right)\)
\(=\dfrac{1}{2}.2^{2019}=2^{2018}\)
\(\Rightarrow S=\dfrac{2^{2018}}{2019!}\)
Đáp án C
Số các số gồm 5 chữ số đôi 1 khác nhau là: 5! = 120 số
Trong mỗi hàng do các số có khả năng xuất hiện như nhau nên mỗi số xuất hiện 120:5=24 lần
⇒ S= 9333240
Đáp án C
Số phần tử của tập S là 5! = 120 số.
Mỗi số 5, 6, 7, 8, 9 có vai trò như nhau và xuất hiện ở hàng đơn vị 4! = 24 lần
Tổng các chữ số xuất hiện ở hàng đơn vị là 4!.(5 + 6 + 7 + 8 + 9) = 840
Tương tự với các chữ số hàng chục, hàng tram, hàng nghìn và hàng chục nghìn.
Vậy tổng tất cả các số thuộc tập S là 840.(104+103+102+10+1) = 9333240
n(S)=6!
Để thỏa mãn yêu cầu đề bài thì cần chọn ra 3 số có tổng là 12
=>Số trường hợp thỏa mãn là (1;5;6); (2;4;6); (3;4;5)
=>Có 3*3!*3!
=>P=3/20
Giải ko cần sử dụng nhị thức Newton:
\(S=5+2.5^2+3.5^3+...+49.5^{49}+50.5^{50}\)
\(\Rightarrow5S=5^2+2.5^3+3.5^4+...+49.5^{50}+50.5^{51}\)
Trừ dưới cho trên:
\(4S=-5-5^2-5^3-5^4-...-5^{50}+50.5^{51}\)
\(\Rightarrow4S=5.5^{51}-\left(5+5^2+...+5^{50}\right)\)
Chú ý rằng trong ngoặc là tổng cấp số nhân với \(\left\{{}\begin{matrix}u_1=5\\q=5\end{matrix}\right.\)
\(\Rightarrow4S=5.5^{51}-\frac{5^{51}-5}{4}=\frac{19}{4}.5^{51}+\frac{5}{4}\)
\(\Rightarrow S=\frac{19.5^{51}+5}{16}\)
E cảm ơn ạ !