Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{98\times99}+\frac{2}{99\times100}\)
\(S=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(S=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(S=2\times\left(1-\frac{1}{100}\right)\)
\(S=2\times\frac{99}{100}\)
\(S=\frac{99}{50}\)
\(S=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{98.99}+\frac{2}{99.100}\)
\(S=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(S=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}+\frac{1}{100}\right)\)
\(S=2.\left(\frac{1}{1}-\frac{1}{100}\right)\\ S=2.\left(\frac{100}{100}+\frac{-1}{100}\right)\\ S=2.\frac{99}{100}\\ S=\frac{99}{50}\)
mk k vt lại đề nha
S=2.(1/1.2+1/2.3+1/3.4+............+1/99.100)
S=2.(1-1/2+1/3-1/4+1/4-1/5+.............+1/99-1/100)
S=2.(1-1/100)
S=2.99/100
S=198/100
S=\(\frac{2}{1.2}\)+\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)+...+\(\frac{2}{98.99}\)+\(\frac{2}{99.100}\)
S=\(\frac{2}{1}\).(\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{98.99}\)+\(\frac{1}{99.100}\))
S=\(\frac{2}{1}\).(\(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{98}\)-\(\frac{1}{99}\)+\(\frac{1}{99}\)-\(\frac{1}{100}\))
S=\(\frac{2}{1}\).(\(\frac{1}{1}\)-\(\frac{1}{100}\))
S=\(\frac{2}{1}\).(\(\frac{100}{100}\)-\(\frac{1}{100}\))
S=\(\frac{2}{1}\).\(\frac{99}{100}\)
S=\(\frac{99}{50}\)
Vậy S=\(\frac{99}{50}\)
Đặt tổng trên là A , ta có :
\(\frac{A}{2}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(\frac{A}{2}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(\frac{A}{2}=\left(1-\frac{1}{100}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{98}\right)+\left(\frac{1}{99}-\frac{1}{99}\right)\)\(\frac{A}{2}=\frac{99}{100}\)
\(A=\frac{99}{100}.2\)
\(A=\frac{99}{50}\)
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
BÀI 1:
\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(S=1+\frac{1}{1.2}+\frac{1}{2.2}+\frac{1}{2.4}+\frac{1}{4.4}+\frac{1}{4.8}\)
\(S=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}\)
\(S=1+1-\frac{1}{8}\)
\(S=\frac{15}{8}\)
BÀI 2:
\(A=1.2+2.3+3.4+...+98.99\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+98.99.3\)
\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99\)
\(3A=\left(1.2.3+2.3.4+3.4.5+98.99.100\right)-\left(1.2.3+2.3.4+...+97.98.99\right)\)
\(3A=98.99.100\)
\(3A=970200\)
\(\Rightarrow A=970200:3\)
\(A=323400\)
CHÚC BN HỌC TỐT!!!
3A=1.2.3+2.3.(4-1)+.............+98.99.(100-97)+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+...........+98.99.100-97.98.99+99.100.101-98.99.100
3A=99.100.101
A=99.100.101:3
A=333300
Ta có : 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 98.99.3 + 99.100.3
=> 3A = 1.2.( 3 - 0 ) + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + ..... + 98.99.( 100 - 97 ) + 99.100.( 101 - 98 )
=> 3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 98.99.100 - 97.98.99 + 99.100.101 - 98.99.100
=> 3A = ( 1.2.3 + 2.3.4 + 3.4.5 + ..... + 98.99.100 + 99.100.101 ) - ( 0.1.2 + 1.2.3 + 2.3.4 + ..... + 98.99.100 )
=> 3A = 99.100.101 - 0.1.2
=> 3A = 99.100.101
=> A = 33.100.101
=> A = 333300
Đặt A= 1.2 + 2.3 + 3.4 + ...+ 99.100
3A = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3A= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3A= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3A = 99.100.101 3S = 3.33.100.101
A=33.100.101= 333300
A= 1.2 + 2.3 + 3.4 + ...+ 99.100
3A = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3A= 1.2.3+2.3﴾4‐1﴿+3.4﴾5‐2﴿+...+98.99﴾100‐97﴿+99.100﴾101‐98﴿
3A= 1.2.3+2.3.4‐1.2.3+3.4.5‐2.3.4+...‐97.98.99+99.100.101‐98.99.100
3A = 99.100.101 3S = 3.33.100.101
A=33.100.101= 333300
Mình làm mẫu 1 bài nha !
Có : 12A = 1.5.12+5.9.12+....+101.105.12
= 1.5.12+5.9.(13-1)+.....+101.105.(109-97)
= 1.5.12+5.9.13-1.5.9+.....+101.105.109-97.101.105
= 1.5.12-1.5.9+101.105.109
= 1155960
=> A = 1155960 : 12 = 96330
Tk mk nha
Có : 4D = 1.2.3.4+2.3.4.4+....+98.99.100.4
= 1.2.3.4+2.3.4.(5-1)+.....+98.99.100.(101-97)
= 1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100
= 98.99.100.101
=> D = 98.99.100.101/4 = 24497550
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{98.99}+\frac{2}{99.100}\)
= \(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
= \(2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
= \(2\left(1-\frac{1}{100}\right)\)
=\(2.\frac{99}{100}\)
=\(\frac{99}{50}\)