Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)1/1x2+1/2x3+....+1/2003x2004
=1-1/2+1/2-1/3+...+1/2003+1/2004
=1-1/2004
=2004/2004-1/2004
=2003/2004
b)1/1x3+1/3x5+...+1/2003x2005
=1-1/3+1/3-1/5+....+1/2003+1/2005
=1-1/2005
=2005/2005-1/2005
=2004/2005
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2003\cdot2004}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}=\frac{2003}{2004}\)
b) Đặt A=\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2003\cdot2005}\)
\(2A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{1}{5\cdot7}+....+\frac{2}{2003\cdot2005}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)
\(2A=1-\frac{1}{2005}\)
\(2A=\frac{2004}{2005}\)
\(A=\frac{2004}{2005}:2=\frac{2004}{2005}\cdot\frac{1}{2}=\frac{1002}{2005}\)
a)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)
\(=\frac{1}{1}-\frac{1}{2004}\)
\(\Rightarrow=\frac{2003}{2004}\)
b)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003+2005}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)
\(=\frac{1}{1}-\frac{1}{2005}\)
\(\Rightarrow=\frac{2004}{2005}\)
Ta có:
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2003.2004}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}=\frac{2003}{2004}\)
b,
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2003.2005}\right).\frac{1}{2}\)
\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}\right).\frac{1}{2}\)
\(=\left(1-\frac{1}{2005}\right).\frac{1}{2}=\frac{2004}{2005}.\frac{1}{2}=\frac{1002}{2005}\)
Nhớ nha bạn
a ) \(\frac{4}{20}+\frac{16}{42}+\frac{6}{15}+\frac{-3}{5}+\frac{2}{21}+\frac{-10}{21}+\frac{3}{20}\)
\(=\frac{4}{20}+\frac{8}{21}+\frac{2}{5}-\frac{3}{5}+\frac{2}{21}+\frac{-10}{21}+\frac{3}{20}\)
\(=\left(\frac{4}{20}+\frac{3}{20}\right)+\left(\frac{8}{21}+\frac{2}{21}-\frac{10}{21}\right)+\left(\frac{2}{5}-\frac{3}{5}\right)\)
\(=\frac{7}{20}+0+\frac{-1}{5}=\frac{7-4}{20}=\frac{3}{20}\)
b ) \(\frac{42}{46}+\frac{250}{186}+\frac{-2121}{2323}+\frac{-125125}{143143}\)
\(=\frac{21}{23}+\frac{-21}{23}+\frac{-125}{143}\)
\(=0+\frac{-125}{143}=-\frac{125}{143}\)
bài 2
a \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2003.2004}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}\)
=\(1-\frac{1}{2004}=\frac{2003}{2004}\)
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2018}=\frac{2017}{2018}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2017}\right)=\frac{1}{2}.\frac{2016}{2017}\)
\(\Rightarrow B=\frac{1008}{2017}\)
a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2003.2004}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}=1-\dfrac{1}{2004}=\dfrac{2003}{2004}\)b)Đặt \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2003.2005}\)
\(\Rightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2003.2005}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2003}-\dfrac{1}{2005}=1-\dfrac{1}{2005}=\dfrac{2004}{2005}\)\(\Rightarrow A=\dfrac{1002}{2005}\)
a: Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2003\cdot2004}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}\)
\(=\dfrac{2003}{2004}\)
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2.\left(1-\frac{1}{99}\right)\)
\(=2.\frac{98}{99}\)
\(=\frac{196}{99}=1\frac{97}{99}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\)
\(2A=2.\left(\frac{1}{1.3}+\frac{1}{2.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\right)\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2003.2005}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)
\(2A=1-\frac{1}{2005}\)
\(2A=\frac{2004}{2005}\)
\(A=\frac{2004}{2005}:2\)
\(A=\frac{1002}{2005}\)
Ủng hộ tk Đúng nha mọi người !!! ^^
Đặt B = \(\frac{1}{1.3}\)+ \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\Rightarrow2B=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\right)\)\(\Rightarrow2B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2003.2005}\Rightarrow2B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2003}-\frac{1}{2005}\)
\(\Rightarrow2B=\frac{1}{3}-\frac{1}{2005}=\frac{2012}{6015}\Rightarrow B=\frac{2012}{6015}:2=\frac{1001}{6015}\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}\)
\(=\frac{2003}{2004}\)
b) Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{2003.2005}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2003.2005}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2003}-\frac{1}{2005}\)
\(=1-\frac{1}{2005}\)
\(=\frac{2004}{2005}\)
\(\Rightarrow A=\frac{2004}{2005}:2=\frac{1002}{2005}\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..........+\frac{1}{2003.2004}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2004}\)
= \(1-\frac{1}{2004}\)
= \(\frac{2004}{2004}-\frac{1}{2004}=\frac{2003}{2004}\)
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..........+\frac{1}{2003.2005}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...........-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2005}\)
= \(1-\frac{1}{2005}\)
= \(\frac{2005}{2005}-\frac{1}{2005}=\frac{2004}{2005}\)