K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2018

1: so sánh 2016/2017+2017/2018 

vì 2016/2017 > 1/2017 >1/2018 =

> 2016/2017+2017/2018 >1/2018+2017/2018=1

vậy .....

22 tháng 8 2018

bạn làm đúng rồi nhưng mình cần 2 bài

25 tháng 8 2021

\( S =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1} {2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right) \)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(\(\Rightarrow S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\) \(\Rightarrow S=P\)\)

25 tháng 8 2021

\(B=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)

\(B=1+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{1}{2018}+1\right)\)

\(B=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)

\(B=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)

ta có \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}=\frac{1}{2019}\)

12 tháng 2 2018

a/A=|x-2017|+|x-2018|

     =|x-2017|+|2018-x|

=>Alớn hơn hoặc bằng |x-2017+2018-x|=1

Dấu = xảy ra khi:(x-2017+2018-x) lớn hơn hoặc bằng 0

Vậy GTNN của A=1khi 2017 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 2018

12 tháng 3 2017

Đặt A=1+2+22+..............+22017 

     \(\Rightarrow\)2A =2+22+23+.............+22018

       \(\Rightarrow\)2A -A = (2+22+23+............+22018)  -(1+2+22 +...............+22017)

       \(\Rightarrow\)A= 22018 -1

  Lại có :A = ( 23 )672 .22 -1 =(7+1)672 .22 -1= ( B(7) +1).22 -1 =22 .B(7) +22-1=22 .B(7)+3

Vây A chia 7 dư 3

12 tháng 5 2019

Đặt \(S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)

 Biến đổi mẫu 

\(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)

\(=\left(2017+1\right)+\left(\frac{2016}{2}+1\right)+...+\left(\frac{1}{2017}+1\right)-2017\)

\(=2018+\frac{2018}{2}+...+\frac{2018}{2017}+\frac{2018}{2018}-2018\)

\(=2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)

\(\Rightarrow S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}=\frac{1}{2018}\)

19 tháng 4 2017

Theo đề bài,ta có:

(a+3c)+(a+2c)=2016+2017=4033

=>a+3c+a+2b=4033

=>2a+2b+2c+c=4033

=>2(a+b+c)+c=4033

Để a+b+c nhỏ nhất thì c lớn nhất => c=9

=>2(a+b+c)=4033-9

=>2(a+b+c)=4024

P=a+b+c=2012

Vậy giá trị nhỏ nhất của a+b+c=2012

Ko biết có đúng ko nữa.

19 tháng 4 2017

lớn nhất mà bạn

10 tháng 7 2017

a) \(\frac{x+2015}{5}+\frac{x+2015}{6}=\frac{x+2015}{7}+\frac{x+2015}{8}\)

\(\frac{x+2015}{5}+\frac{x+2015}{6}-\frac{x+2015}{7}-\frac{x+2015}{8}=0\)

\(\left(x+2015\right).\left(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\right)=0\)

vì \(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\ne0\)

\(\Rightarrow\)x + 2015 = 0

\(\Rightarrow\)x = -2015

b) Tương tự