K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

2017.2019 = (2018-1)(2018+1) = 20182 -1 => a =1

b= 20183 +1 (???)

Đặt 2018=a

\(VT=a\left(a-1\right)\left(a+1\right)=a\left(a^2-1\right)=a^3-a< a^3\)

Do đó: VT<VP

3 tháng 12 2017

Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)

Vậy A<B

13 tháng 7 2017

A=24783,14746B=49566,29188

Vậy A<B

14 tháng 7 2017

Ta thấy \(A=\frac{2018-2017}{2018+2017}=\frac{2018^2-2017^2}{\left(2018+2017\right)^2}=\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}\)

Mà \(2018^2+2.2018.2017+2017^2>2018^2+2017^2\)

\(\Rightarrow\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}< \frac{2018^2-2017^2}{2018^2+2017^2}\)

Vậy A<B

6 tháng 10 2018

      \(2018^2-2017.2019\)

\(=2018^2-\left(2018-1\right)\left(2018+1\right)\)

\(=2018^2-\left(2018^2-1\right)=1\)

      \(56^2+56.88+44^2\)

\(=56^2+2.56.44+44^2\)

\(=\left(56+44\right)^2\)

\(=100^2=10000\)

       \(\frac{2018^3+1}{2018^2-2017}\)

\(=\frac{\left(2018+1\right)\left(2018^2-2018+1\right)}{2018^2-2017}\)

\(=\frac{2019\left(2018^2-2017\right)}{2018^2-2017}=2019\)

Chúc bạn học tốt.

5 tháng 3 2019

\(\frac{x-3}{2017}-\frac{x-2}{2018}=\frac{x-2018}{2}+\frac{x-2017}{3}\)

\(\Leftrightarrow\frac{x-3}{2017}-1-\frac{x-2}{2018}-1=\frac{x-2018}{2}-1+\frac{x-2017}{3}-1\)

\(\Leftrightarrow\frac{x-2020}{2017}-\frac{x-2020}{2018}=\frac{x-2020}{2}+\frac{x-2020}{3}\)

\(\Leftrightarrow\frac{x-2020}{2017}-\frac{x-2020}{2018}-\frac{x-2020}{2}-\frac{x-2020}{3}=0\)

\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2}-\frac{1}{3}\right)=0\)

\(\Leftrightarrow x-2020=0\Leftrightarrow x=2020\)

8 tháng 10 2019

a,

\(2018^2-2017\cdot2019\\ =2018^2-\left(2018-1\right)\left(2018+1\right)\\ =2018^2-2018^2+1\\ =1\)

b, Đề khó nhìn bạn ạ, gõ Latex đi bạn! :)

8 tháng 10 2019

a) 2018^2-2017.2019

= 2018^2 -(2018-1)(2018+1)

= 2018^2 -2018^2 -1

=-1

11 tháng 7 2017

Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2=0-2\cdot0\)

\(\Rightarrow a=b=c=0\)

Thế kết quả vào: \(\left(0-2017\right)^{2018}+\left(0-2017\right)^{2018}-\left(0+2017\right)^{2018}=2017^{2018}\)

Ps: \(\left(-2017\right)^{2018}=2017^{2018}\)

31 tháng 3 2018

\(B=\sqrt{1+2017^2+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

Đặt B = 2017 => B + 1 = 2018

Khi B bằng: 

\(B=\sqrt{1+B^2+\frac{B}{\left(B+1\right)^2}}+\frac{B}{B+1}\)

\(B=\sqrt{\frac{\left(B+1\right)^2+B^2\left(B+1\right)^2+B^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)

\(B=\sqrt{\frac{B^2\left(B+1\right)^2+2B\left(B+1\right)^2+B^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)

\(B=\sqrt{\frac{\left[B\left(B+1\right)+1\right]^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)

\(B=\frac{B^2+B+1}{B+1}+\frac{B}{B+1}\left(\text{vi}:a>0\right)\)

\(B=\frac{B^2+2B+1}{B+1}\)

\(B=\frac{\left(B+1\right)^2}{B+1}\)

\(B=B+1\left(\text{vi}:a>0\Rightarrow B+1>0\right)\)

\(B=2017+1\left(\text{vi}:B=2017\right)\)

\(\Rightarrow B=2018\)