Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A\(=\dfrac{1}{9}.\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{1}{12}+\dfrac{1}{12}.\dfrac{1}{13}+\dfrac{1}{13}.\dfrac{1}{14}+\dfrac{1}{14}.\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{15}=\dfrac{2}{45}\)
\(A=\dfrac{1}{9}.\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{1}{12}+\dfrac{1}{12}.\dfrac{1}{13}+\dfrac{1}{13}.\dfrac{1}{14}+\dfrac{1}{14}.\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{15}\)
\(=\dfrac{2}{45}\)
-Chúc bạn học tốt-
\(\dfrac{1}{5}+\dfrac{2}{11}< \dfrac{x}{55}< \dfrac{2}{5}+\dfrac{1}{5}\)
\(\dfrac{11+10}{55}< \dfrac{x}{55}< \dfrac{3}{5}\)
\(\dfrac{21}{55}< \dfrac{x}{55}< \dfrac{33}{55}\)
Vậy \(x\in\left\{22;23;24;...\right\}\)
Ta có :
\(\dfrac{1}{11}>\dfrac{1}{20}\\ \dfrac{1}{12}>\dfrac{1}{20}\\ ..........\\ \dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\\ \Rightarrow S>\dfrac{10}{20}\\ \Rightarrow S>\dfrac{1}{2}\)
Ta có: \(\dfrac{1}{11}>\dfrac{1}{20}\)
\(\dfrac{1}{12}>\dfrac{1}{20}\)
\(\dfrac{1}{13}>\dfrac{1}{20}\)
\(\dfrac{1}{14}>\dfrac{1}{20}\)
\(\dfrac{1}{15}>\dfrac{1}{20}\)
\(\dfrac{1}{16}>\dfrac{1}{20}\)
\(\dfrac{1}{17}>\dfrac{1}{20}\)
\(\dfrac{1}{18}>\dfrac{1}{20}\)
\(\dfrac{1}{19}>\dfrac{1}{20}\)
\(\dfrac{1}{20}=\dfrac{1}{20}\)
=> \(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}>\dfrac{1}{20}.10\)
hay S > \(\dfrac{1}{2}\)
Ta có :
\(\dfrac{1}{11}>\dfrac{1}{20}\) ( vì 1 > 0 , 0 < 11 < 20 )
\(\dfrac{1}{12}>\dfrac{1}{20}\) ( vì 1 > 0 , 0 < 12 < 20 )
...
\(\dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\)( 10 số hạng )
\(\Rightarrow S>\dfrac{1}{20}.10\Rightarrow S>\dfrac{10}{20}\Rightarrow S>\dfrac{1}{2}\)
Vậy ...
\(1,A=-\dfrac{3}{4}.\left(0,125-1\dfrac{1}{2}\right):\dfrac{33}{16}-25\%\)
\(A=-\dfrac{3}{4}.\left(0,125-\dfrac{3}{2}\right):\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=-\dfrac{3}{4}.\left(-\dfrac{11}{8}\right):\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=\dfrac{33}{32}:\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=\dfrac{33}{32}.\dfrac{16}{33}-\dfrac{1}{4}\)
\(A=\dfrac{1}{2}-\dfrac{1}{4}\)
\(A=\dfrac{2}{4}-\dfrac{1}{4}\)
\(A=\dfrac{1}{4}\)
\(a,\dfrac{13}{14}\cdot\dfrac{-7}{8}+\dfrac{-3}{2}\)
\(=-\dfrac{13}{16}+\dfrac{-3}{2}\)
\(=-\dfrac{13}{16}+\dfrac{-24}{16}\)
\(=-\dfrac{37}{16}\)
\(b,\dfrac{5}{17}+\dfrac{-15}{34}\cdot\dfrac{2}{5}\)
\(=\dfrac{5}{17}+\dfrac{-3}{17}\)
\(=\dfrac{2}{17}\)
\(c,\dfrac{1}{5}:\dfrac{1}{10}-\dfrac{1}{3}\cdot\left(\dfrac{6}{5}-\dfrac{2}{4}\right)\)
\(=2-\dfrac{1}{3}\cdot\dfrac{7}{10}\)
\(=2-\dfrac{7}{30}\)
\(=\dfrac{53}{30}\)
\(d,\dfrac{-3}{4}:\left(\dfrac{12}{-5}-\dfrac{-7}{10}\right)\)
\(=\dfrac{-3}{4}:\dfrac{-17}{10}\)
\(=\dfrac{15}{34}\)
1) âm năm phần 12
2) âm mười bảy phần 9
3) -1
Đây là đáp án còn làm bài từ làm nhé
a) \(\dfrac{-5}{9}-\dfrac{-5}{12}=\dfrac{-5}{9}+\dfrac{5}{12}=\dfrac{-20}{36}+\dfrac{15}{36}=-\dfrac{5}{36}\)
b) \(\dfrac{-5}{12}:\dfrac{15}{4}=\dfrac{-5}{12}\times\dfrac{4}{15}=\dfrac{-1}{9}\)
c) \(\dfrac{1}{13}\cdot\dfrac{8}{13}+\dfrac{5}{13}\cdot\dfrac{1}{13}-\dfrac{14}{13}=\dfrac{1}{13}\cdot\left(\dfrac{8}{13}+\dfrac{5}{13}\right)-\dfrac{14}{13}=\dfrac{1}{13}\cdot1-\dfrac{14}{13}=\dfrac{1}{13}-\dfrac{14}{13}=-1\)
\(=\left(\dfrac{1}{10}+\dfrac{-1}{10}\right)+\left(-\dfrac{1}{11}+\dfrac{1}{11}\right)+\left(-\dfrac{1}{12}+\dfrac{1}{12}\right)+\left(-\dfrac{1}{13}+\dfrac{1}{13}\right)+\left(-\dfrac{1}{14}+\dfrac{1}{14}\right)+\left(-\dfrac{1}{15}+\dfrac{1}{15}\right)+\dfrac{1}{16}\\ =\dfrac{1}{16}\)
Tính nhanh :
\(\dfrac{1}{10}+\dfrac{-1}{11}+\dfrac{1}{12}+\dfrac{-1}{13}+\dfrac{1}{14}+\dfrac{-1}{15}+\dfrac{1}{16}+\dfrac{-1}{10}+\dfrac{1}{11}+\dfrac{-1}{12}+\dfrac{1}{13}+\dfrac{-1}{14}+\dfrac{1}{15}\)
\(=\left(\dfrac{1}{10}+\dfrac{-1}{10}\right)+\left(\dfrac{-1}{11}+\dfrac{1}{11}\right)+\left(\dfrac{1}{12}+\dfrac{-1}{12}\right)+\left(\dfrac{-1}{13}+\dfrac{1}{13}\right)+\left(\dfrac{1}{14}+\dfrac{-1}{14}\right)\)
\(+\left(\dfrac{-1}{15}+\dfrac{1}{15}\right)+\dfrac{1}{16}\)
\(=0+0+...+0+\dfrac{1}{16}\)
\(=\dfrac{1}{16}\)