Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow P=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}\)
\(\Rightarrow P=\frac{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}{11\left(\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)\right)}\)
\(\Rightarrow P=\frac{3}{11}\)
A = 5/7.(1+9/13) − 5/7.9/13
A= 5/7.(1+9/13 - 9/13)
A = 5/7.1
A = 5/7
B = 11/24 − 5/41 + 13/24 + 0.5 − 36/41
B = (11/24 + 13/24) - (5/41 + 36/41) + 0.5
B = 1 - 1 + 0.5
B = 0.5
C = −4/13.5/17 + (−12/13).4/17 + 4/13
C = 4/13.(-5/17) + (−12/13).4/17 + 4/13
C = 4/13.(-5/17 + 1) + (−12/13).4/17
C = 4/13.(−12/17) + (−12/13).4/17
C = (4.-12)/(13.17) + (−12/13).4/17
C = 4/17.(−12/13) + (−12/13).4/17
C = 4/17.(−12/13).2
C = 96/221
D = (4/3 − 3/2)2 − 2.∣−1/9∣ + (−5/18)
D = (4/3 − 3/2)2 − 2.1/9+ (−5/18)
D = -1/62 - 2/9+ (−5/18)
D = -1/12 - ( 2/9+ (−5/18) )
D = -1/12 - ( 4/18+ (−5/18) )
D = -1/12 - (-1/18)
D = -1/12 + 1/18
D = -3/36 + 2/36
D = -1/36
E = (−3/4 + 2/3):5/11 + (−1/4 + 1/3):5/11
E = (−3/4 + 2/3 + (−1/4) + 1/3):5/11
E = ((−3/4 + (−1/4)) + (2/3 + + 1/3)):5/11
E = ( - 1 + 1):5/11
E = 0:5/11
E = 0
=3/4-3/5+3/7+3/13 / 11/4-11/5+11/7+11/13 + 3/4-3/5+3/7+3/13 / 11/4-11/5+11/7+11/13
=3.1/4-3.1/5+3.1/7+3.1/13 / 11.1/4-11.1/5+11.1/7+11.1/13 + 3.1/4-3.1/5+3.1/7+3.1/13 / 11. 1/4-11.1/5+11.1/7+11.1/13
=3.(1/4-1/5+1/7+1/13) / 11.(1/4-1/5+1/7+1/13) + 3.(1/4-1/5+1/7+1/13) / 11.(1/4-1/5+1/7+1/13)
=3/11+3/11
=6/11
\(B=\left(0,75-0,6+\frac{3}{7}+\frac{3}{13}\right):\left(\frac{11}{7}+\frac{11}{13}+2,75-2,2\right)\)
\(B=\left(\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}\right):\left(\frac{11}{7}+\frac{11}{13}+\frac{11}{4}-\frac{11}{5}\right)\)
\(B=3\cdot\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right):11\cdot\left(\frac{1}{7}+\frac{1}{13}+\frac{1}{4}-\frac{1}{5}\right)\)
\(B=\frac{3}{11}\)
Hi Hi!
b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=\frac{-2}{3}\)
d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}=\frac{2}{13}\)
Làm tiếp:
\(=\left(1+\frac{1}{2}+.....+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+.........+\frac{1}{2017}\)
\(\Rightarrow\frac{\frac{1}{1009}+....+\frac{1}{2017}}{1-\frac{1}{2}+.....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}=1\)
Bài 2:
Đặt \(A=\frac{1}{2^2}+.......+\frac{1}{2^{800}}\)
\(4A=1+\frac{1}{2^2}+.....+\frac{1}{2^{798}}\)
\(\Rightarrow4A-A=1-\frac{1}{2^{800}}\)
\(\Rightarrow3A=1-\frac{1}{2^{800}}< 1\Rightarrow A< \frac{1}{3}\)
Vậy \(\frac{1}{2^2}+\frac{1}{2^4}+........+\frac{1}{2^{800}}< \frac{1}{3}\)
Bài 1:Tính
a, Xét biểu thức \(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).........\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)..........\left(1+\frac{n+2}{n}\right)}\) với\(n\in N\)
Ta có:\(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).......\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)......\left(1+\frac{n+2}{n}\right)}\)
\(=\frac{\frac{n+1}{1}.\frac{n+2}{2}........\frac{2n+2}{n+2}}{\frac{n+3}{1}.\frac{n+4}{2}.........\frac{2n+2}{n}}\)
\(=\frac{\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right)}{1.2.3.........\left(n+2\right)}}{\frac{\left(n+3\right)\left(n+4\right)........\left(2n+2\right)}{1.2.3.........n}}\)
\(=\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right).1.2.3.......n}{\left(n+3\right)\left(n+4\right)........\left(2n+2\right).1.2.3......\left(n+2\right)}\)
\(=\frac{\left(n+1\right)\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}=1\)
Áp dụng vào bài toán ta có đáp số là:1
b, \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=-\frac{2}{3}\)
c,\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}=\frac{\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}{\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}=\frac{\frac{1}{3}}{\frac{1}{4}}=12\)
d,\(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}=\frac{2}{13}\)
e,Xét mẫu số ta có:
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)
\(=1+\frac{1}{2}-2.\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2.\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-2.\frac{1}{2016}+\frac{1}{2017}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{2016}\right)\)