Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
=1+ 243/729+ 81/729 + 27/729 + 9/729 + 3/729
=1093/729
A=1+1/3+1/3^2+......1/3^6
3A= 3 +1 + 1/3+......=1/3^5
3A-A= 3-1/3^6
A=\(\frac{3-\frac{1}{3^6}}{2}\)
ta có :
= ( 1 + 59049 ) + ( 3 + 2187 ) + ( 9 + 6561 ) + ( 27 + 243 ) + ( 81 + 729 )
= 59050 + 2190 + 6570 + 270 + 810
= 59050 + ( 2190 + 810 ) + 6570 + 270
= 59050 + 3000 + 6570 + 270
= 59050 + ( 3000 + 6570 ) + 270
= 59050 + 9570 + 270
= 68620 + 270
= 68890
Gọi S là tổng của biểu thức:
\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}.\)
\(3S=3\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
\(3S-S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^6}\)
\(2S=1-\frac{1}{3^6}\Rightarrow S=\left(1-\frac{1}{3^6}\right):2\)
Tổng = 243/729 + 81/729 + 9/729 + 3/729 + 1/729
= (243+81+9+3+1)/729
= 337/729
\(\text{Đặt : }A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow3A-A=1-\frac{1}{729}\)
\(\Rightarrow2A=\frac{728}{729}\)
\(\Rightarrow A=\frac{728}{729}:2=\frac{364}{729}\)
đặt biểu thức trên là A
ta có :
A= ghi biểu thức ra
A.3=3.(1+1/3+1/9+1/27+1/81+1/243+1/729)
A.3=3+1+1/3+1/9+1/27+1/81+1/243
A.3-A=...
A.2=3-1/729
sau đó bn tự tính ra
đặt S=\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
=>3S= \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
=>3S-S=\(\left(1+\frac{1}{3}+...+\frac{1}{243}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\right)\)
=>s=1-1/729 = 728/729
1/3+1/9+1/27+1/81+1/243+1/729=(1/3+1/9+1/81)+(1/27+1/243+1/729)=37/81+37/729=333/729+37/729=370/729