Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2+1/6+1/12+.......+1/10100
1/1x2+1/2x3+1/3x4+...........+1/100x101
1-1/2+1/2-1/3+1/3-..........+1/100-1/101
1-1/101
=100/101
cho bạn công thức mẫu trừ đi bao nhiêu thì tử là bấy nhiêu
vd 2/2x4=1/2-1/4
chúc bạn học tốt
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+..+\frac{1}{9900}+\frac{1}{10100}\)
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}+\frac{1}{100\times101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{101}{101}-\frac{1}{101}\)
\(=\frac{100}{101}\)
Dễ quá
1/2 + 1/6 + 1/12 + 1/20 + ... + 1/9900
Đặt A = 1/2 + 1/6 + 1/12 + 1/20 + ... + 1/9900
A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/99.100
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .... + 1/99 - 1/100]
A = 1/1 - 1/100
A = 99/100
Vậy A = 99/100
1/2 + 1/6 + 1/12 + 1/20 + ... + 1/9900
= 1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + ... + 1/99x100
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
T= 1 - 1/2 + 1/2 - 1/3 + ......+ 1/99 - 1/100
= 1 - 1/100
= 99/100
\(t=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(t=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(t=1-\frac{1}{100}=\frac{99}{100}\)
Vậy \(t=\frac{99}{100}\)
`A=1/2+1/6+1/12+1/20+1/30+...+1/9900`
`=1/(1xx2)+1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(99xx100)`
`=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/99-1/100`
`=1/1-1/100`
`=100/100-1/100`
`=99/100`
ta có : t = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/98.99 + 1/99.100
=> t = 1/1 - 1/2 + 1/2 - 1/3 + .... + 1/99 - 1/100
=> t = 1 - 1/100
=> t = 99/100
T=1/1x2+1/2x3+1/3x4+....................+1/98x99+1/99x100
T=1-1/2+1/2-1/3+..............+1/98-1/99+1/99-1/100
T=1-1/100
T=99/100
A = 1+ 1+1+ ...+ 1 +(\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}+\dfrac{1}{10100}\))
=(1+1+1+...+1)+ (\(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{99x100}+\dfrac{1}{100x101}\))
=100 +\(1-\dfrac{1}{101}=100-\dfrac{100}{101}=\dfrac{10000}{101}\)
1+1/2+1+1/6+1+1/12+...+1+1/9900
=1+1/1*2+1+1/2.3+....+1+1/99*100
=100*1+1-1/2+1/2-1/3+1/3-1/4...+1/99-1/100
=100+99/100
=10099/100