Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=x^3+x^2y-5x^2-x^2y-xy^2+5xy+3\left(x+y\right)+2000\\ =x^2\left(x+y-5\right)-xy\left(x+y-5\right)+3\left(x+y-5\right)+2015\\ =x^2\left(5-5\right)-xy\left(5-5\right)+3\left(5-5\right)+2015\\ =2015\)
`P = x^3 + x^2 - 5x^2 - x^2y + xy^2 + 5xy + 3(x+y) + 2000`
`P = x^2(x+y) - (x+y)x^2 - xy(x+y) + (x+y)xy + 3(x+y) + 2000`
`P = 0 + 0 + 3.5 + 2000`
`P = 2015`
\(P=\dfrac{1}{3}x^2y+xy^2-xy+\dfrac{1}{2}xy^2-5xy-\dfrac{1}{3}x^2y=\dfrac{3}{2}xy^2-6xy\)
Thay x = 2 ; y = 1 ta được
\(\dfrac{3}{2}.2.1-6.2.1=3-12=-9\)
\(\Leftrightarrow P=\left(\frac{1}{3}x^2y-\frac{1}{3}x^2y\right)+\left(xy^2+\frac{1}{2}xy^2\right)-\left(xy+5xy\right)\)
\(\Leftrightarrow P=\frac{3}{2}xy^2-6xy\)
Thay \(x=0,5;y=1\)vaof P; dc:
\(P=\frac{3}{2}\cdot0,5-6.0,5=\frac{1}{2}\left(\frac{3}{2}-\frac{12}{2}\right)=\frac{1}{2}\cdot\frac{-9}{2}=-\frac{9}{4}\)
A=\(\left(\frac{2}{5}xy+3x^2y^3-4xy^3\right)-\left(-x^2y^3+xy^3+\frac{2}{5}xy\right)+5\)
A=\(\frac{2}{5}xy+3x^2y^3-4xy^3+x^2y^3-xy^3-\frac{2}{5}xy+5\)
A=\(\left(\frac{2}{5}xy-\frac{2}{5}xy\right)+\left(3x^2y^3+x^2y^3\right)+\left(-4xy^3-xy^3\right)+5\)
A=\(4x^2y^3-5xy^3+5\)
Thay \(x=\frac{1}{2}\) và \(y=-1\) vào đa thức A, ta được:
\(4.\left(\frac{1}{2}\right)^2.\left(-1\right)^3-5.\left(\frac{1}{2}\right).\left(-1\right)^3+5\)
=\(4.\frac{1}{4}.\left(-1\right)-5.\frac{1}{2}.\left(-1\right)+5\)
=\(\left(-1\right)-\left(-\frac{5}{2}\right)+5\)
= \(\frac{3}{2}+5=\frac{13}{2}\)
Vậy giá trị của đa thức A tại \(x=\frac{1}{2}\) và \(y=-1\) là \(\frac{13}{2}\)
Nhớ tick cho mình nha!