Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2}{3}+\dfrac{3}{4}\cdot\dfrac{-4}{9}=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}=\dfrac{100}{300}\)
\(B=\dfrac{25}{11}\cdot\dfrac{13}{12}\cdot\dfrac{-11}{5}=\dfrac{-65}{12}=\dfrac{-1625}{300}\)
\(C=\left(\dfrac{3}{4}-\dfrac{1}{5}\right)\cdot\left(\dfrac{2}{5}-\dfrac{4}{5}\right)=\dfrac{11}{20}\cdot\dfrac{-2}{5}=\dfrac{-22}{100}=\dfrac{-11}{50}=\dfrac{-66}{300}\)
Vì -1625<-66<100
nên B<C<A
Câu 3:
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: DF=DC
hay ΔDFC cân tại D
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
a)
- Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-1\right|+\left|x-4\right|\ge\left|x-1+4-x\right|=3\)
\(\Rightarrow B\ge3\)
Dấu = khi \(\left(x-1\right)\left(x-4\right)\ge0\)\(\Rightarrow1\le x\le4\)
Vậy MinB=3 khi \(1\le x\le4\)
- Áp dụng tiếp Bđt kia ta có:
\(\left|1993-x\right|+\left|1994-x\right|\ge\left|1993-x+x-1994\right|=1\)
\(\Rightarrow C\ge1\)
Dấu = khi \(\left(x-1993\right)\left(x-1994\right)\ge0\)\(\Rightarrow1993\le x\le1994\)
Vậy MinC=1 khi \(1993\le x\le1994\)
- Ta thấy: \(\begin{cases}x^2\\\left|y-2\right|\end{cases}\ge0\)
\(\Rightarrow x^2+\left|y-2\right|\ge0\)
\(\Rightarrow x^2+\left|y-2\right|-5\ge-5\)
\(\Rightarrow D\ge-5\)
Dấu = khi \(\begin{cases}x=0\\y=2\end{cases}\)
Vậy MinD=-5 khi \(\begin{cases}x=0\\y=2\end{cases}\)
b)Ta thấy:
\(\begin{cases}\left|4x-3\right|\\\left| 5y+7,5\right|\end{cases}\ge0\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
\(\Rightarrow C\ge17,5\)
Dấu = khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)
Vậy MinC=17,5 khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)
c)Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2002\right|+\left|x-2001\right|\ge\left|x-2002+2001-x\right|=1\)
\(\Rightarrow M\ge1\)
Dấu = khi \(\left(x-2002\right)\left(x-2001\right)\ge0\)\(\Rightarrow2001\le x\le2002\)
Vậy MinM=1 khi \(2001\le x\le2002\)
Câu 1:
a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)
c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)
\(P\left(0\right)=0\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
P1 >0(vì số âm nhân số âm bằng số dương)
P2<0(vì 3 số âm nhân với nhau thành số âm)
P3=0(vì trong dãy số có 0/11=0 nên nhân lại bằng 0)
P2<P3<P1