K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x^2+y^2+z^2=xy+yz+xz

=>2x^2+2y^2+2z^2-2xy-2yz-2xz=0

=>(x-y)^2+(y-z)^2+(x-z)^2=0

=>x=y=z

=>A=(x-x)^2022+(y-y)^2023=0

AH
Akai Haruma
Giáo viên
7 tháng 10 2021

Lời giải:

$P=(xy+yz+xz)^2+(x^2-yz)^2+(y^2-zx)^2+(z^2-xy)^2$
$=x^2y^2+y^2z^2+z^2x^2+2x^2yz+2xy^2z+2xyz^2+x^4+y^2z^2-2x^2yz+y^4+z^2x^2-2xzy^2+z^4+x^2y^2-2xyz^2$

$=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2$

$=(x^2+y^2+z^2)^2=10^2=100$

M+2019=2xy−yz−zx+2020M+2019=2xy−yz−zx+2020

=2xy−yz−zx+x2+y2+z2=2xy−yz−zx+x2+y2+z2

=(x+y−z2)2+3z24≥0=(x+y−z2)2+3z24≥0

⇒Mmin=0⇒Mmin=0 khi ⎧⎩⎨⎪⎪⎪⎪x+y−z2=03z24=0x2+y2+z2=2020{x+y−z2=03z24=0x2+y2+z2=2020

⇔⎧⎩⎨⎪⎪x+y=0z=0x2+y2=2020⇔{x+y=0z=0x2+y2=2020 ⇒⎧⎩⎨⎪⎪x=±1010−−−−√y=−xz=0

1 tháng 11 2020

mình không hiểu ạ

5 tháng 11 2016

\(\frac{x^2-yz}{yz}+1+\frac{y^2-zx}{zx}+1+\frac{z^2-xy}{xy}+1=3\Leftrightarrow\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=3\)

\(\Leftrightarrow\frac{1}{xyz}\left(x^3+y^3+z^3\right)=3\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)

Tới đây bạn thay vào nhé :)

20 tháng 3 2017

Ta có :

\(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(z^2+x^2\ge2zx\)

\(x^2+1\ge2x\)

\(y^2+1\ge2y\)

\(z^2+1\ge2z\)

Suy ra :  \(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2.6=12\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge9\)

\(\Leftrightarrow x^2+y^2+z^2\ge3\)

Dấu ''='' xảy ra khi x=y=z=1

Vậy GTNN của  \(x^2+y^2+z^2\)là 3 khi x=y=z=1