Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4}{3}\times\frac{4}{7}+\frac{4}{7}\times\frac{4}{11}+...+\frac{4}{91}\times\frac{4}{95}+\frac{4}{95}\times\frac{4}{99}\)
\(=4\left(\frac{1}{3\times7}+\frac{1}{7.11}+...+\frac{1}{91\times95}+\frac{1}{95\times99}\right)\)
\(=4\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{91}-\frac{1}{95}+\frac{1}{95}-\frac{1}{99}\right)\)
\(=4\left(\frac{1}{3}-\frac{1}{99}\right)=4\times\frac{32}{99}=\frac{128}{99}\)
\(\Rightarrow A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\)
\(A=4\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{95.99}\right)\)
\(A=4.\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\right)\)
\(A=\frac{4}{4}\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(A=\frac{32}{99}\)
\(\frac{4}{3}.\frac{4}{7}+\frac{4}{7}.\frac{4}{11}+\frac{4}{11}.\frac{4}{15}+...+\frac{4}{95}.\frac{4}{99}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\Leftrightarrow A=\frac{32}{99}\)
1, =\(\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}=\frac{1}{2}\)
2, A=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
= \(\frac{1\cdot2\cdot3\cdot....\cdot99}{2\cdot3\cdot4\cdot...\cdot100}=\frac{1}{100}\)
Vậy ......
hok tốt
\(\frac{A}{4}=\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{95.99}\)
\(\frac{A}{4}=\frac{7-3}{3.7}+\frac{11-7}{7.11}+...+\frac{99-95}{95.99}\)
\(\frac{A}{4}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(A=\frac{4.32}{99}\)
\(4.A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{95}-\frac{1}{99}\\ 4.A=\frac{1}{3}-\frac{1}{99}\\ 4.A=\frac{32}{99}\\ A=\frac{32}{99}:4\\ A=\frac{8}{99}\)