K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

\(A=\frac{1^2}{1.3}+\frac{2^2}{3.5}+...+\frac{1006^2}{2011.2013}\)

\(\Leftrightarrow4A=\frac{2^2.1^2}{2^2-1}+\frac{2^2.2^2}{4^2-1}+...+\frac{2^2.1006^2}{2012^2-1}\)

\(=1006+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2011.2013}\right)\)

\(=1006+\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)

\(=1006+\frac{1}{2}\left(1-\frac{1}{2013}\right)=\frac{2026084}{2013}\)

\(\Rightarrow A=\frac{506521}{2013}\)

9 tháng 10 2017

\(P=\dfrac{1^2}{1.3}+\dfrac{2^2}{3.5}+...+\dfrac{1005^2}{2009.2011}\)

\(\Leftrightarrow4P=\dfrac{4.1^2}{1.3}+\dfrac{4.2^2}{3.5}+...+\dfrac{4.1005^2}{2009.2011}\)

\(=\dfrac{2^2}{2^2-1}+\dfrac{4^2}{4^2-1}+...+\dfrac{2010^2}{2010^2-1}\)

\(=2009+\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2009.2011}\right)\)

\(=2009+\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)

\(=2009+\dfrac{1}{2}\left(1-\dfrac{1}{2011}\right)=2009+\dfrac{1005}{2011}\)

7 tháng 10 2017

Ace Legona Akai Haruma Phương AnPhương AnVõ Đông Anh Tuấn làm jum Hung nguyen

10 tháng 11 2017

1/ Ta có:

\(a^5-a^3+a=2\)

Dễ thấy a = 0 không phải là nghiệm từ đó ta có:

\(a^6-a^4+a^2=2a\)

\(\Rightarrow2a=a^6+a^2-a^4\ge2a^4-a^4\ge a^4\)

\(\Rightarrow\hept{\begin{cases}2a\ge a^4\\a>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\ge a^3\\a>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4\ge a^6\\a>0\end{cases}}\)

Dấu = không xảy ra 

Vậy \(a^6< 4\)

9 tháng 11 2017

Câu 2/

Câu hỏi của XPer Miner - Toán lớp 9 - Học toán với OnlineMath

18 tháng 7 2016

Đặt  \(u=\frac{x}{a};\)  và  \(v=\frac{y}{b}\)  \(\Rightarrow\)  \(\hept{\begin{cases}u,v\in Z\\u+v=1\\uv=-2\end{cases}}\)

Khi đó, ta có:

\(u+v=1\)

nên  \(\left(u+v\right)^3=1\)  \(\Leftrightarrow\)  \(u^3+v^3+3uv\left(u+v\right)=1\)

Do đó,  \(u^3+v^3=1-3uv\left(u+v\right)=1+6=7\)

Vậy,  \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=7\)

18 tháng 7 2016

\(ĐK:\)  \(a,b,c\ne0\)

Ta có: 

\(a+b+c=0\)

\(\Leftrightarrow\) \(a+b=-c\)

\(\Rightarrow\)  \(\left(a+b\right)^2=\left(-c\right)^2\)

\(\Leftrightarrow\)  \(a^2+b^2+2ab=c^2\)

nên    \(a^2+b^2-c^2=-2ab\)

Tương tự với vòng hoán vị  \(b\rightarrow c\rightarrow a\)  ta cũng suy ra được:

\(\hept{\begin{cases}b^2+c^2-a^2=-2bc\\c^2+a^2-b^2=-2ca\end{cases}}\)

Khi đó, biểu thức  \(P\)  được viết lại dưới dạng:

\(P=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=-\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=-\frac{1}{2}\left(\frac{a+b+c}{abc}\right)=0\) (do \(a,b,c\ne0\)  )

18 tháng 7 2016

10. a) 

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Leftrightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow\left(a+b\right)\left(x^4+y^4\right)=ab\left(x^2+y^2\right)^2\Leftrightarrow\left(bx^2-ay^2\right)^2=0\Leftrightarrow bx^2=ay^2\)

b) Từ \(ay^2=bx^2\Rightarrow\frac{y^2}{b}=\frac{x^2}{a}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2008}}{a^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)\(\frac{y^{2008}}{b^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)

\(\Rightarrow\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)

18 tháng 7 2016

25. Ta có \(\left(ax+by+cz\right)^2=0\Leftrightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(abxy+bcyz+acxz\right)\)

Xét mẫu số của P : \(bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2=bc\left(y^2-2yz+z^2\right)+ac\left(x^2-2xz+z^2\right)+ab\left(x^2-2xy+y^2\right)\)

\(=y^2bc-2bcyz+bcz^2+acx^2-2xzac+acz^2+abx^2-2abxy+aby^2\)

\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2-2\left(abxy+xzac+bcyz\right)\)

\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)

\(=c\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+a\left(ax^2+by^2+cz^2\right)=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)

\(\Rightarrow P=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{2007}\)

8. \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=\left(\frac{x}{a}+\frac{y}{b}\right)^3-3.\frac{xy}{ab}\left(\frac{x}{a}+\frac{y}{b}\right)=1^3-3.\left(-2\right).1=7\)

6 tháng 8 2017

Với mọi n thuộc N ta có :

\(\sqrt{\frac{1}{1^2}+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+\frac{2}{n}-\frac{2}{n\left(n+1\right)}-\frac{2}{\left(n+1\right)}}\)

\(=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng ta được :

\(S=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+....+\left(1+\frac{1}{99}-\frac{1}{100}\right)\)

\(=98+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=98+\frac{1}{2}-\frac{1}{100}=\frac{9849}{100}\)

26 tháng 7 2018

Xem lại đề

26 tháng 7 2018

\(=\frac{\sqrt{\frac{2+2\sqrt{2}+1}{3}}+\sqrt{\frac{2-2\sqrt{2}+1}{3}}}{\sqrt{\frac{2+2\sqrt{2}+1}{3}}-\sqrt{\frac{2-2\sqrt{2}+1}{3}}}\)

\(=\frac{\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{3}}+\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{3}}}{\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{3}}-\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{3}}}\)

\(=\frac{\frac{\sqrt{2}+1+\sqrt{2}-1}{\sqrt{3}}}{\frac{\sqrt{2}+1-\sqrt{2}+1}{\sqrt{3}}}=\frac{\frac{2\sqrt{2}}{\sqrt{3}}}{\frac{2}{\sqrt{3}}}=\sqrt{2}\)

10 tháng 8 2017

Mỗi biểu thức trong dấu căn có dạng:

\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}\)   ( Với \(k\ge2\))

Ta có:

\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}=\frac{k^2\left(k+1\right)^2+\left(k+1\right)^2+k^2}{k^2\left(k+1\right)^2}=\frac{k^4+2k^3+k^2+k^2+2k+1+k^2}{k^2\left(k+1\right)^2}\)

\(=\frac{k^4+2k^2\left(k+1\right)+\left(k+1\right)^2}{k^2\left(k+1\right)^2}=\frac{\left(k^2+k+1\right)^2}{\left(k\left(k+1\right)\right)^2}\)

\(\Rightarrow\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=\frac{k^2+k+1}{k^2+k}=1+\frac{1}{k\left(k+1\right)}=1+\frac{1}{k}-\frac{1}{k+1}\)

\(\Rightarrow S=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2013}-\frac{1}{2014}=2014-\frac{1}{2014}\)

22 tháng 9 2017

Mỗi biểu thức trong dấu căn có dạng:

1+1k2 +1(k+1)2    ( Với k≥2)

Ta có:

1+1k2 +1(k+1)2 =k2(k+1)2+(k+1)2+k2k2(k+1)2 =k4+2k3+k2+k2+2k+1+k2k2(k+1)2 

=k4+2k2(k+1)+(k+1)2k2(k+1)2 =(k2+k+1)2(k(k+1))2 

⇒√1+1k2 +1(k+1)2 =k2+k+1k2+k =1+1k(k+1) =1+1k −1k+1 

⇒S=1+1−12 +1+12 −13 +1+13 −14 +...+1+12013 −12014 =2014−12014