K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right).........................\left(\dfrac{1}{99}-1\right)\left(\dfrac{1}{100}-1\right)\)

\(A=\left(\dfrac{1}{2}-\dfrac{2}{2}\right)\left(\dfrac{1}{3}-\dfrac{3}{3}\right)\left(\dfrac{1}{4}-\dfrac{4}{4}\right)................\left(\dfrac{1}{99}-\dfrac{99}{99}\right)\left(\dfrac{1}{100}-\dfrac{100}{100}\right)\)

\(A=\left(\dfrac{-1}{2}\right)\left(\dfrac{-2}{3}\right)\left(\dfrac{-3}{4}\right)...................\left(\dfrac{-98}{99}\right)\left(\dfrac{-99}{100}\right)\)

\(A=\dfrac{\left(-1\right)\left(-2\right)\left(-3\right).........................\left(-98\right)\left(-99\right)}{2.3.4....................98.99.100}\)

\(A=\dfrac{-1}{100}\)

14 tháng 5 2017

Ta có

A = \(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{99}-1\right).\left(\dfrac{1}{100}-1\right)\)(99 thừa số)

A = \(\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}....\dfrac{-98}{99}.\dfrac{-99}{100}\)

A = \(\dfrac{\left(-1\right).\left(-2\right).\left(-3\right)....\left(-98\right).\left(-99\right).\left(-100\right)}{2.3.4....98.99.100}\)

A = \(\dfrac{\left(-1\right).\left(-1\right).\left(-1\right)....\left(-1\right)}{1.1.1...1.1.1}\) (100 số -1, 99 số 1)

A = \(\dfrac{-1}{1.1.1.1...1.1.1}\)

A = \(\dfrac{-1}{1}\)

A = -1

Vậy A = -1

10 tháng 1 2022

bằng 0 nha bạn

tick cho mình

10 tháng 1 2022

\(D=\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)=\dfrac{4}{1.3}.\dfrac{9}{2.4}...\dfrac{2019.2021+1}{2019.2021}=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}...\dfrac{2020.2020}{2019.2021}=\left(\dfrac{2}{1}.\dfrac{3}{2}...\dfrac{2020}{2019}\right).\left(\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2020}{2021}\right)=2020.\dfrac{2}{2021}=\dfrac{4040}{2021}\)

1: \(S=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}=\dfrac{101}{2}\)

2: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2006}{2007}=\dfrac{1}{2007}\)

18 tháng 3 2017

a)

\(A=\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{99.101}{100.100}\)

\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)

\(=\dfrac{1}{100}.\dfrac{101}{2}\)

\(=\dfrac{101}{200}\)

18 tháng 3 2017

ai bít câu b.c ko

25 tháng 4 2017

\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{100}-1\right)\)

\(=\left(\dfrac{-1}{2}\right).\left(\dfrac{-2}{3}\right).\left(\dfrac{-3}{4}\right)...\left(\dfrac{-99}{100}\right)\) ( 99 phân số )

\(=\dfrac{\left(-1\right)\left(-2\right)\left(-3\right)...\left(-99\right)}{2.3.4...100}=\dfrac{-1}{100}\)

Vậy \(A=\dfrac{-1}{100}\)

6 tháng 3 2018

\(\left(a\right):P=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}....\dfrac{99}{100}\)

Nhận xét

thừa số tổng quát là \(\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\) với n =1 đến 10

\(P=\dfrac{1.3.2.4.3.5...9.11}{2^2.3^2...9^2.10^2}=\dfrac{\left(1.2.3...9\right)\left(3.4.5....11\right)}{\left(2.3.4....10\right)\left(2.3.4....10\right)}\)

\(P=\dfrac{1.2.3..9}{2.3.4..9.10}.\dfrac{3.4.5...10.11}{2.3.4....10}=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}\)

7 tháng 3 2018

Thanks ak!

23 tháng 5 2018

Giải:

\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{99}{100}\)

\(=\dfrac{1.2.3...99}{2.3.4...100}\)

\(=\dfrac{1}{100}\)

Vậy ...

23 tháng 5 2018

mơn z là mik làm đúng rùihihi

10 tháng 9 2017

\(B=1+\dfrac{1}{2}.\left(1+2\right)+\dfrac{1}{3}.\left(1+2+3\right)+\dfrac{1}{4}.\left(1+2+3+4\right)+...+\dfrac{1}{100}.\left(1+2+3+...+100\right)\)

\(B=1+\dfrac{1}{2}.2.3:2+\dfrac{1}{3}.3.4:2+\dfrac{1}{4}.4.5:2+...+\dfrac{1}{100}.100.101:2\)

\(B=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{101}{2}\)

\(B=\dfrac{2+3+4+...+101}{2}\)

Tự tính :v