Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính giá trị biểu thức sau:
M=3 mũ 2/2*5 + 3 mũ 2/5*8 + 3 mũ 2 /8*11 +....+ 3 mũ 2/98*101
Vì \(\left(x+1\right)^{30}+\left(y+2\right)^{50}\ge0\)mà theo đề bài ta có\(\left(x+1\right)^{30}+(y+2)^{50}=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^{30}=0\\\left(y+2\right)^{50}=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y+2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)
Vậy \(x=-1,y=-2\)
a, \(A=\left(x+2y\right)^2-x+2y\)
Thay x = 2 ; y = -1 ta được
\(A=\left(2-2\right)^2-2-2=-4\)
b, Ta có \(\left(x^2+4>0\right)\left(x-1\right)=0\Leftrightarrow x=1\)
Thay x = 1 vào B ta được \(B=3+8-1=10\)
c, Thay x = 1 ; y = -1 ta được
\(C=3,2.1.\left(-1\right)=-3,2\)
d, Ta có \(x=\left|3\right|=3;y=-1\)Thay vào D ta được
\(D=3.9-5\left(-1\right)+1=27+5+1=33\)
thay x=2,y=-1 vào biểu thức A ta có;
A=(2+2.(-1)^2-2+2.(-1)
A=(2+-2)^2-2+-2
A=0-2+-2
A=-4
b)
(x^2+4)(x-1)=0
suy ra x-1=0(x^2+4>0 với mọi x thuộc thuộc R)
(+)x-1=0
x =1
thay x=1 vào biểu thức B ta có;
B=3.1^2+8.1-1
B=3.1+8-1
B=3+8-1
B=10
c)thay x=1 và y=-1 vào biểu thức C ta có;
C=3,2.1^5.(-1)^3
C=3,2.1.(-1)
C=(-3,2)
d)giá trị tuyệt đối của 3=3 hoặc (-3)
TH1;thay x=3:y=-1 vào biểu thức d ta có;
D=3.3^2-5.(-1)+1
D=3.9-(-5)+1
D=27+5+1
D=33
Câu 1 :
\(3\left(x-3\right)\left(x+7\right)+\left(1-4\right)\left(x+4\right)+18\)
\(=3\left(x^2+4x-21\right)-3\left(x+4\right)\)
\(=3x^2+12x-63-3x-12=3x^2+9x-75\)
Thay x = 1/2 vào ta được
\(\dfrac{3.1}{4}+\dfrac{9}{2}-75=-\dfrac{279}{4}\)
Câu 2 :
\(5x^2+5xy+5x=5x\left(x+y+1\right)\)
Thay x = 60 ; y = 50 ta được
\(300\left(60+50+1\right)=33300\)
Câu 3 :
\(4x^2y^2+2xy^2+6x^2y=2xy\left(2xy+y+3x\right)\)
Thay x = 10 ; y = 1/2 ta được
\(\dfrac{2.10.1}{2}\left(\dfrac{2.10.1}{2}+\dfrac{1}{2}+30\right)=405\)
1: \(=3\left(x^2+4x-21\right)+x^2-16+18\)
\(=3x^2+12x-63+x^2+2\)
\(=4x^2+12x-61\)
\(=4\cdot\dfrac{1}{4}+12\cdot\dfrac{1}{2}-61=1-61+6=-54\)
2: \(=5\cdot60^2+5\cdot60\cdot50+5\cdot60=33300\)
3: \(=4\cdot10^2\cdot\dfrac{1}{4}+2\cdot10\cdot\dfrac{1}{4}+6\cdot100\cdot\dfrac{1}{2}=405\)
Ta có: \(\left(x-1\right)^{20}\ge0\forall x\)
\(\left(y+2\right)^{30}\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\)
Mà \(\left(x-1\right)^{20}+\left(y+2\right)^{30}=0\)
\(\Rightarrow\left(x-1\right)^{20}=\left(y+2\right)^{30}=0\)
\(\Rightarrow x-1=y+2=0\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay x = 1 và y = -2 vào biểu thức A ta được:
\(A=2.1^5-5.\left(-2\right)^3+4=-76\)
Vậy A = -76 tại x = 1 và y = -2.
Ta có : \(\hept{\begin{cases}\left(x-1\right)^{20}\ge0\forall x\\\left(y+2\right)^{30}\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\forall x;y\)
Dựa vào đề bài ta có \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Khi đó A = 2.15 - 5.(-2)3 + 4 = 2 + 40 + 4 = 46
Lời giải:
Vì $(x+1)^{30}\geq 0$ với mọi $x\in\mathbb{R}$
$(y+2)^{50}\geq 0$ với mọi $y\in\mathbb{R}$
Do đó để tổng $(x+1)^{30}+(y+2)^{50}=0$ thì:
$(x+1)^{30}=(y+2)^{50}=0\Rightarrow x=-1; y=-2$
Khi đó:
$8x^2y+5x^3=8(-1)^2(-2)+5(-1)^3=-21$