Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử độ dài 2 đoạn thẳng của cạnh huyền đc chia ra là a và b (a>b>0)
Theo đề ta có hpt: ab=576 và a-b=14=>a=14+b
Vậy ta có (14+b)b=576=> b2+14b-576=0
Giải pt này ta nhận già trị b=18 =>a=32
Cạnh huyền có độ dài là a+b=50
#)Giải : (Nếu là pt hoặc hệ pt thì mk k bít nhưng mk bít giải theo cách này)
Gọi x (cm) là một phần của cạnh huyền
=> Phần còn lại của cạnh huyền là x + 14 (cm)
Áp dụng tính chất đường cao trong tam giác vuông :
\(24^2=x\left(x+14\right)\Rightarrow x^2+14x-24^2=0\Rightarrow x=18\)
=> Phần còn lại của cạnh huyền là 18 + 14 = 32 (cm)
=> Canh huyền dài 32 + 18 = 50 (cm)
Gọi độ dài đoạn thẳng ngắn hơn được chia trên cạnh huyền là x (cm) với x>0
\(\Rightarrow\) Độ dài đoạn còn lại là \(x+14\)
Áp dụng hệ thức lượng trong tam giác vuông:
\(24^2=x\left(x+14\right)\)
\(\Leftrightarrow x^2+14x-576=0\Rightarrow\left[{}\begin{matrix}x=18\\x=-32\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\) Độ dài cạnh huyền là: \(18+\left(18+14\right)=50\left(cm\right)\)
Diện tích tam giác: \(S=\dfrac{1}{2}.24.50=600\left(cm^2\right)\)
gọi độ dài hai cạnh góc vuông là x và y
=> \(\hept{\begin{cases}x^2+y^2=13^2=169\\\frac{1}{2}\left(x+1\right)\left(y-2\right)=\frac{1}{2}xy\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2=169\\y=2x+2\end{cases}\Rightarrow}\hept{\begin{cases}x^2+\left(2x+2\right)^2=169\\y=2x+2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}5x^2+8x-165=0\\y=2x+2\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=12\end{cases}}}\)
Gọi độ dài 1 cạnh góc vuông là x (cm, x>7)
độ dài 1 cạnh góc vuông còn lạ là x-7 (cm)
Theo đè là ta có
\(x^2+\left(x-7\right)^2=13^2\)(ĐL Pytago)
\(\Leftrightarrow x^2+x^2-14x+49=169\)
\(\Leftrightarrow2x^2-14x-120=0\)
\(\Leftrightarrow x^2-7x-60=0\)
\(\Leftrightarrow x^2-12x+5x-60=0\)
\(\Leftrightarrow x.\left(x-12\right)+5.\left(x-12\right)=0\)
\(\Leftrightarrow\left(x-12\right).\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-12=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=12\left(TM\right)\\x=-5\left(L\right)\end{cases}}\)
Vậy độ dài 1 cạnh góc vuông là 12cm
dộ dài 1 cạnh góc vuông còn lại là \(12-7=5\left(cm\right)\)
Nhớ k cho mình nhé
Lời giải:
Gọi cạnh góc vuông lớn là $a+5$, cạnh góc vuông nhỏ là $a$ (cm)
Áp dụng định lý Pitago:
$a^2+(a+5)^2=25^2$
$\Leftrightarrow 2a^2+10a-600=0$
$\Leftrightarrow a^2+5a-300=0$
$\Leftrightarrow (a-15)(a+20)=0$
$\Rightarrow a=15$ (do $a>0$)
Vậy cạnh góc vuông thứ nhất là $15$, cạnh góc vuông thứ hai là $20$
Bài 1:
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)