K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

Chọn B.

Ta thấy đường thẳng y = -4x - 4 và đường thẳng y = 4x - 4 lần lượt là hai tiếp tuyến của đồ thị hàm số y = x2 tại các tiếp điểm có hoành độ x = -2 và x = 2.

Do tính đối xứng qua Oy của parabol y = x2 nên diện tích hình phẳng cần tìm bằng 2 lần diện tích tam giác cạnh OMT2 và bằng:

S = 2 ∫ 0 2 x 2 - 4 x - 4 d x   =   2 ∫ 0 2 x - 2 2 d x   =   2 ( x - 2 ) 3 3   2 0   =   16 3

AH
Akai Haruma
Giáo viên
23 tháng 2 2021

Lời giải:

Trước tiên ta tìm giao điểm của 2 ĐTHS:

PT hoành độ giao điểm: $|x^2-4x+3|=x+3$

$\Rightarrow x=0$ hoặc $x=5$

Diện tích hình phẳng giới hạn bởi $(C)$ và $(d)$ là:

\(\int ^5_0(x+3-|x^2-4x+3|)dx=\frac{109}{6}\) (đơn vị diện tích)

29 tháng 7 2019

Chọn A

20 tháng 8 2018

Đáp án D

4 tháng 2 2018

Đáp án D.

21 tháng 7 2019

10 tháng 3 2019

Chọn C.

16 tháng 9 2019

Đáp án A

29 tháng 4 2019

Đáp án A

NV
22 tháng 3 2022

Phương trình hoành độ giao điểm:

\(2x^3-3x^2+1=x^3-4x^2+2x+1\)

\(\Leftrightarrow x^3+x^2-2x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\\x=1\end{matrix}\right.\)

Trên \(\left(-2;0\right)\) ta có \(x^3+x^2-2x>0\) và trên \(\left(0;1\right)\) ta có \(x^3+x^2-2x< 0\)

Do đó:

\(S=\int\limits^0_{-2}\left(x^3+x^2-2x\right)dx-\int\limits^1_0\left(x^3+x^2-2x\right)dx=\dfrac{8}{3}+\dfrac{5}{12}=\dfrac{37}{12}\)