Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(2x=\dfrac{1}{3}\)
hay \(x=\dfrac{1}{6}\)
Vậy: \(A_{min}=-\dfrac{7}{4}\) khi \(x=\dfrac{1}{6}\)
b) Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|+4\ge4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
Vậy: \(B_{min}=4\) khi x=2 và y=6
2/ = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +......+\(\dfrac{1}{100.101}\)
= 1-\(\dfrac{1}{2}\) +\(\dfrac{1}{2}\) -\(\dfrac{1}{3}\)+.........+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\)
=1-\(\dfrac{1}{101}\)=...........
mk làm vậy thôi nha
thông cảm
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{4.5}\)=\(1-\dfrac{1}{2}+....+\dfrac{1}{4}-\dfrac{1}{5}\)
=1-\(\dfrac{1}{5}=\dfrac{4}{5}\)
tương tự
Câu 1:
\(A\in Z\Rightarrow6n-1⋮3n+2\)
\(\Rightarrow6n+4-5⋮3n+2\)
\(\Rightarrow2\left(3n+2\right)-5⋮3n+2\)
\(\Rightarrow5⋮3n+2\)
đến đây tự lm nốt nhé
1. Để A có giá trị nguyên thì \(6n-1⋮3n+2\)
Ta có: \(\left\{{}\begin{matrix}6n-1⋮3n+2\\3n+2⋮3n+2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}6n-1⋮3n+2\\2\left(3n+2\right)⋮3n+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n-1⋮3n+2\\6n+4⋮3n+2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}6n-1⋮3n+2\\6n-1+5⋮3n+2\end{matrix}\right.\)
\(\Rightarrow\left(6n-1+5\right)-\left(6n-1\right)⋮3n+2\)
\(\Rightarrow5⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(5\right)\)
\(\Rightarrow3n+2\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow3n\in\left\{-7;\pm3;-1;\right\}\)
\(\Rightarrow n\in\left\{\pm1\right\}\)
Vậy để \(A\in Z\) thì n nhận các giá trị là: \(\pm1\)
Bạn ơi thiếu đề rồi, cái biểu thức này không tính được đâu , mình nghĩ thế
Tacó :
B = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{9^2}\) \(\Rightarrow\)Đặt D=\(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\)<B
\(\Rightarrow\)D= \(\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{3}-.....+\dfrac{1}{9}-\dfrac{1}{10}\) \(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow D=\dfrac{2}{5}\)
Vì D =\(\dfrac{2}{5}\) =\(\dfrac{2}{5}\)
mà D<B
\(\Rightarrow\)B>\(\dfrac{2}{5}\)(dpcm)
tuyệt đói ko chép mạng thề 100%