K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{2017}{2018}\)x\(\frac{7}{8}\)+\(\frac{2017}{2018}\)x\(\frac{3}{8}\)-\(\frac{2017}{2018}\)x\(\frac{1}{4}\)

\(\frac{2017}{2018}\)x  (\(\frac{7}{8}\)+\(\frac{3}{8}\)-\(\frac{1}{4}\))

\(\frac{2017}{2018}\)x  ( \(\frac{10}{8}\)\(\frac{1}{4}\))

\(\frac{2017}{2018}\)x ( \(\frac{10}{8}\)\(\frac{2}{8}\))

\(\frac{2017}{2018}\)x  1

\(\frac{2017}{2018}\)

Chúc em học tốt nhé :>

24 tháng 10 2021

=2017/2018*(7/8+3/8)-2017*1/4

=2017/2018*5/4+2017*-1/4

=2017/2018*(5/4-1/4)

=2017/2018*1

=2017/2018

`@` `\text {Ans}`

`\downarrow`

`a)`

`13/50 + 9% + 41/100 + 0,24`

`= 0,26 + 0,09 + 0,41 + 0,24`

`= (0,26 + 0,24) + (0,09 + 0,41)`

`= 0,5 + 0,5`

`= 1`

`b)`

`2018 \times 2020 - 1/2017 + 2018 \times 2019`

`= 2018 \times (2020 + 2019) - 1/2017`

`= 2018 \times 4039 - 1/2017`

`= 8150702`

`c)`

`1/2 + 1/6 + 1/12 + 1/20 +1/30 +1/42`

`=`\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}\)

`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{6}-\dfrac{1}{7}\)

`=`\(1-\dfrac{1}{7}\)

`= 6/7`

12 tháng 6 2023

\(a,\dfrac{13}{50}+9\%+\dfrac{41}{100}+0,24\\ 0,26+0,09+0,41+0,24\\ =\left(0,26+0,24\right)+\left(0,09+0,41\right)\\ =0,5+0,5\\ =1\\ b,2018\times2020-\dfrac{1}{2017}+2018\times2019\\ =2018\times\left(2020+2019\right)-\dfrac{1}{2017}\\ =2018\times4039-\dfrac{1}{2017}\\ =3150702-\dfrac{1}{2017}\\ c,\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\\ =1-\dfrac{1}{2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}.........+\dfrac{1}{6}-\dfrac{1}{7}\\ =1-\dfrac{1}{7}\\ =\dfrac{6}{7}\)

28 tháng 1 2020

Ta có : A =\(\frac{2017}{2018}\)\(\frac{7}{8}\)\(\frac{2017}{2018}\)\(\frac{3}{8}\)\(\frac{2017}{2018}\)\(\frac{1}{4}\)

                = \(\frac{2017}{2018}\) x ( \(\frac{7}{8}+\frac{3}{8}-\frac{1}{4}\))

                  = \(\frac{2017}{2018}\)x 1

                    =\(\frac{2017}{2018}\)

Vậy A= : \(\frac{2017}{2018}\)

28 tháng 1 2020

                                                                   Bài giải

\(A=\frac{2017}{2018}\text{ x }\frac{7}{8}+\frac{2017}{2018}\text{ x }\frac{3}{8}-\frac{2017}{2018}\text{ x }\frac{1}{4}\)

\(A=\frac{2017}{2018}\text{ x }\frac{1}{4}\left(\frac{7}{2}+\frac{3}{2}-1\right)=\frac{2017}{2018}\text{ x }\frac{1}{4}\text{ x }4==\frac{2017}{2018}\text{ x }1=\frac{2017}{2018}\)

13 tháng 7 2018

\(2018\cdot2018-2017\cdot2019\)

\(=2018^2-\left(2018-1\right)\left(2018+1\right)\)

\(=2018^2-\left(2018^2-1\right)\)

\(=2018^2-2018^2+1\)

\(=1\)

13 tháng 7 2018

\(2018.2018-2017.2019\)

\(=2018^2-\left(2018-1\right)\left(2018+1\right)\)

  \(=2018^2-\left(2018^2-1\right)\)

  \(=2018^2-2018^2+1\)

  \(=1\)

12 tháng 3 2017

= -1 + -1 + -1 + -1 +...+ -1 + -1

dãy trên có số số hạng là :

         (2018- 1):1 + 1 = 2016

vậy có 1008 số 1 

= -1008

tk nha, bài này mk làm rồi

11 tháng 6 2018

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

3 tháng 8 2017

= 0 nha bn

tk cho mk với

\(=\frac{2018}{2017}\)

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

29 tháng 7 2018

vì  2016/ 2017<1 ,

2017/ 2018 <1

2018 /2019<1

=>  2016/ 2017 + 2017/ 2018 + 2018 / 2019<1+1+1=3

vậy A = 2016/ 2017 + 2017/ 2018 + 2018 / 2019 < 3