Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{99}-\frac{x+1}{101}+\frac{x-2}{98}-\frac{x+2}{102}+\frac{x-3}{97}-\frac{x+3}{103}+\frac{x-4}{96}-\frac{x+4}{104}=0\)
\(\Rightarrow\frac{x-1}{99}-1-\frac{x+1}{101}+1+\frac{x-2}{98}-1-\frac{x+2}{102}+1+\frac{x-3}{97}-1-\frac{x+3}{103}+1+\frac{x-4}{96}-1-\frac{x+4}{104}+1=0\)
\(\Rightarrow\frac{x-100}{99}-\frac{x-100}{101}+\frac{x-100}{98}-\frac{x-100}{102}+\frac{x-100}{97}-\frac{x-100}{103}+\frac{x-100}{96}-\frac{x-100}{104}=0\)
\(\Rightarrow\left(x-100\right).\left(\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\right)=0\)
Vì \(\frac{1}{99}>\frac{1}{101};\frac{1}{98}>\frac{1}{102};\frac{1}{97}>\frac{1}{103};\frac{1}{96}>\frac{1}{104}\)
\(\Rightarrow\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy \(x=100\)
Giúp mình nha. Bài cuối cùng của đề toán dài 36 bài của mình đó
\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)
Nên từ đây => \(A< 1\) (ĐPCM)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\left(\frac{100}{2}+1\right)+\left(\frac{99}{3}+1\right)+...+\left(\frac{1}{101}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{102}{2}+\frac{102}{3}+...+\frac{102}{101}+\frac{102}{102}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{102.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}+\frac{1}{102}\right)}\)
\(A=\frac{1}{102}\)
A = 1/102