K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

D = 2 . 3 + 4 . 5 + 6. 7 + ... + 50 . 51 = 150,850

E = 1 . 99 + 2 . 98 + 3 . 97 + ... + 49 . 51 + 50 .50 = 82,464

Tick nha

11 tháng 9 2019

hahaha

5 tháng 8 2017

Ta thấy:
\(A=1\cdot3+2\cdot4+...+97\cdot99+98\cdot100\)
\(A=1\cdot\left(1+2\right)+2\cdot\left(1+3\right)+...+97\cdot\left(1+98\right)+98\cdot\left(1+99\right)\)
\(A=\left(1+1\cdot2\right)+\left(2+2\cdot3\right)+...+\left(97+97\cdot98\right)+\left(98+98\cdot99\right)\)
\(A=\left(1+2+...+97+98\right)+\left(1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\right)\)
Đặt \(B=1+2+...+97+98\) ; \(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\). Khi đó: \(A=B+C\)
* Do số các số hạng của tổng B là:    ( 98 - 1 ) : 1 + 1 = 98 ( số hạng ) nên:
\(B=1+2+...+97+98=\frac{\left(98+1\right)\cdot98}{2}=99\cdot49=4851\)
* Ta thấy:
\(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+...+97\cdot98\cdot3+98\cdot99\cdot3\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+97\cdot98\cdot\left(99-96\right)+98\cdot99\cdot\left(100-97\right)\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+97\cdot98\cdot99-96\cdot97\cdot98+98\cdot99\cdot100-97\cdot98\cdot99\)
\(\Rightarrow3\cdot C=98\cdot99\cdot100\)
\(\Rightarrow C=\frac{98\cdot99\cdot100}{3}\)
\(\Rightarrow C=98\cdot33\cdot100\)
\(\Rightarrow C=323400\)
Vậy: \(A=B+C=4851+323400=328251\)