Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. A = 75(42004 + 42003 +...+ 42 + 4 + 1) + 25
A = 25 . [3 . (42004 + 42003 +...+ 42 + 4 + 1) + 1]
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 3 + 1)
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 4)
A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)
A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100
a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{2}{63}\)
b) \(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}\)
Vậy.........
\(A=\frac{15}{34}+\frac{7}{21}+\frac{9}{34}-1\frac{15}{17}+\frac{2}{3}=\frac{15}{34}+\frac{7}{21}+\frac{9}{34}-\frac{64}{34}+\frac{14}{21}=\left(\frac{15}{34}+\frac{9}{34}-\frac{64}{34}\right)+\left(\frac{7}{21}+\frac{14}{21}\right)=\frac{30}{34}+\frac{21}{21}=\frac{15}{17}+1=\frac{32}{17}\)
\(b,\left(\sqrt{1\frac{9}{16}-\sqrt{\frac{9}{16}}}\right):5\)
\(=\left(\sqrt{\frac{25}{16}-\frac{3}{4}}\right):5\)
\(=\sqrt{\frac{13}{16}}:5\)
\(=\frac{\sqrt{13}}{4}:5\)
\(=\frac{\sqrt{13}}{20}\)
C = \(25.\left(\frac{-1}{3}\right)^3\) \(+\frac{1}{5}\) \(-2.\left(\frac{-1}{2}\right)^2\) \(-\frac{1}{2}\)
C = \(25.\left(\frac{-1}{27}\right)+\frac{1}{5}\) \(-2.\frac{1}{4}\) \(-\frac{1}{2}\)
C = \(\frac{-25}{27}\) \(+\frac{1}{5}\) \(-\frac{1}{2}\) \(-\frac{1}{2}\)
C = \(\frac{-25}{27}\) \(+\frac{1}{5}\) \(-1\)
C = \(\frac{-125}{135}\) \(+\frac{27}{135}\) \(-\frac{135}{135}\)
C = \(\frac{-233}{135}\)
D = \(-8.\left(\frac{3}{4}-\frac{1}{4}\right):\left(\frac{9}{4}-\frac{7}{6}\right)\)
D = \(-8.\frac{1}{2}\) \(.\frac{12}{13}\)
D = \(-4.\frac{12}{13}\)
D = \(\frac{-48}{13}\)
E = \(5\sqrt{16}\) \(-4\sqrt{9}\) \(+\sqrt{25}\) \(-0,3\sqrt{400}\)
E = \(5.4-4.3+5-0,3.20\)
E = \(20-12+5-6\)
E = \(8+\left(-1\right)\)
E = \(7\)
F = \(\left(\frac{-3}{2}\right)\) \(+\left|\frac{-5}{6}\right|\) \(-1\frac{1}{2}\) \(:6\)
F = \(\left(\frac{-3}{2}\right)\) \(+\frac{5}{6}\) \(-\frac{3}{2}\) \(.\frac{1}{6}\)
F = \(\left(\frac{-3}{2}\right)\) \(+\frac{5}{6}\) \(-\frac{1}{4}\)
F = \(\left(\frac{-18}{12}\right)\) \(+\frac{10}{12}\) \(-\frac{3}{12}\)
F = \(\frac{-11}{12}\)
Chúc cậu hk tốt ~
n=ghi lộn nhé !!
a)\(10.\sqrt{0,01.\sqrt{ }\frac{16}{9}}+3\sqrt{49-\frac{1}{6}}\sqrt{4}\)
a)
\((\sqrt2- \sqrt3).(\sqrt2+\sqrt3)\)
=\(\sqrt2.\sqrt2 + \sqrt2.\sqrt3-\sqrt3.\sqrt2+\sqrt3.\sqrt3\)
=\(1.1+1.\sqrt3-\sqrt3.1+\sqrt3.\sqrt3\)
=1+0+3=4
\(a,\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)=\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2=2-3=-1\)
\(b,-\left(\sqrt{2}\right)^4+\left(\sqrt{3}\right)^6=-\left(\sqrt{2}^2\right)^2+\left(\sqrt{3}^2\right)^3=-2^2+3^3=-4+27=23\)
\(c,A=\frac{1}{1-\frac{1}{1-2^{-4}}}+\frac{1}{1+\frac{1}{1+2^{-1}}}=\frac{1}{1-\frac{1}{1-\frac{1}{16}}}+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}=\frac{1}{1-\frac{1}{\frac{15}{16}}}+\frac{1}{1+\frac{1}{\frac{3}{2}}}\)
\(=\frac{1}{1-\frac{16}{15}}+\frac{1}{1+\frac{2}{3}}=\frac{1}{-\frac{1}{15}}+\frac{1}{\frac{5}{3}}=-15+\frac{3}{5}=-14,4\)
\(d,B=9+99+...+99...9=\left(10-1\right)+\left(100-1\right)+...+\left(100...0-1\right)\)
\(=\left(10+100+...+100...0\right)-\left(1+1+...+1\right)=11...10-50=11...1060\)(có 48 chữ số 1)