K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{3}}{3}\cdot\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{2}}{2}+\dfrac{3}{6}=\dfrac{\sqrt{2}+1}{2}\)

b: \(=\tan46^0\cdot\cot46^0\cdot1=1\)

c: \(=\dfrac{3\cdot\dfrac{\sqrt{3}}{2}}{2\cdot\dfrac{3}{4}-1}=\dfrac{3\sqrt{3}}{2}:\dfrac{1}{2}=3\sqrt{3}\)

6 tháng 7 2017

a=\(\frac{1+\sqrt{2}}{2}\)

b=1

c=\(2\sqrt{3}\)

13 tháng 8 2017

a)1-1+1=1

13 tháng 8 2017

a.1

b.1,140119483

c.0,353338015

4 tháng 9 2018

câu 1 : ta có : \(A=\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-3sin^2x.cos^2x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-sin^2x.cos^2x\right)+2sin^2xcos^2x\)

\(=-sin^2x.cos^2x\left(1-sin^2x.cos^2x\right)+2sin^2x.cos^2x\)

\(=sin^2x.cos^2x\left(1+sin^2x.cos^2x\right)\)

tới đây mk xin sử dụng kiến thức lớp 10 một chút

\(=\dfrac{sin^22x}{4}\left(1+\dfrac{sin^22x}{4}\right)=\dfrac{sin^22x}{4}+\dfrac{sin^42x}{16}\)

vẩn phụ thuộc vào x \(\Rightarrow\) đề sai .

4 tháng 9 2018

câu 1 : câu này bn có thể tìm trong trang của mk , mk nhớ đã làm nó rồi nhưng tìm hoài không đc . nếu đc bn có thể chờ mk đi hok về mk sẽ kiếm cho bn hoắc có thể là lm lại cho bn nha :)

câu 2 : https://hoc24.vn/hoi-dap/question/657072.html

câu 3 : https://hoc24.vn/hoi-dap/question/657069.html

câu 4 : https://hoc24.vn/hoi-dap/question/656635.html

câu 5 : https://hoc24.vn/hoi-dap/question/657071.html

1: \(=\dfrac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}\)

\(=\dfrac{\dfrac{1}{cotx}+cotx+2}{2+tanx+cotx}\)

\(=1\)

2: \(VT=\dfrac{cos^2x+cosxsinx+sin^2x-sinx\cdot cosx}{sin^2x-cos^2x}\)

\(=\dfrac{1}{sin^2x-cos^2x}\)

\(VP=\dfrac{1+cot^2x}{1-cot^2x}=\left(1+\dfrac{cos^2x}{sin^2x}\right):\left(1-\dfrac{cos^2x}{sin^2x}\right)\)

\(=\dfrac{1}{sin^2x}:\dfrac{sin^2x-cos^2x}{sin^2x}=\dfrac{1}{sin^2x-cos^2x}\)

=>VT=VP

4 tháng 9 2018

điều kiện xác định \(cotx;sinx\ne0\)

ta có : \(\dfrac{cot^2x-cos^2x}{cot^2x}+\dfrac{sinx.cosx}{cotx}=\dfrac{cot^2x-cos^2x}{cot^2x}+\dfrac{cos^2x}{cot^2x}\)

\(=\dfrac{cot^2x-cos^2x+cos^2x}{cot^2x}=\dfrac{cot^2x}{cot^2x}=1\) (không phụ thuộc vào \(x\)) (đpcm)