K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

a)

\(S=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{100}+\sqrt{101}}\)

\(S=\frac{\sqrt{2}-\sqrt{1}}{(\sqrt{2}+\sqrt{1})(\sqrt{2}-\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}+....+\frac{\sqrt{101}-\sqrt{100}}{(\sqrt{101}+\sqrt{100})(\sqrt{101}-\sqrt{100})}\)

\(S=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{101}-\sqrt{100}}{101-100}\)

\(S=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\)

\(S=\sqrt{101}-1\)

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

b)

\(S=\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}+...+\frac{1}{\sqrt{100}+\sqrt{102}}\)

\(S=\frac{\sqrt{4}-\sqrt{2}}{(\sqrt{4}+\sqrt{2})(\sqrt{4}-\sqrt{2})}+\frac{\sqrt{6}-\sqrt{4}}{(\sqrt{6}+\sqrt{4})(\sqrt{6}-\sqrt{4})}+...+\frac{\sqrt{102}-\sqrt{100}}{(\sqrt{102}+\sqrt{100})(\sqrt{102}-\sqrt{100})}\)

\(S=\frac{\sqrt{4}-\sqrt{2}}{4-2}+\frac{\sqrt{6}-\sqrt{4}}{6-4}+....+\frac{\sqrt{102}-\sqrt{100}}{102-100}\)

\(S=\frac{\sqrt{4}-\sqrt{2}+\sqrt{6}-\sqrt{4}+\sqrt{8}-\sqrt{6}+...+\sqrt{102}-\sqrt{100}}{2}\)

\(S=\frac{\sqrt{102}-\sqrt{2}}{2}\)

Câu 1: 

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)

\(\Leftrightarrow1-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)

=>n+1=3000

hay n=2999

12 tháng 7 2017

Giải:

Ta có tính chất tổng quát:

\(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)

\(=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)

Áp dụng vào biểu thức

\(\Rightarrow A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{224}}-\frac{1}{\sqrt{225}}\)

\(=1-\frac{1}{\sqrt{225}}\)

17 tháng 12 2020

Với n > 0 ta có:

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\).

Do đó: \(\dfrac{1}{2+2\sqrt{2}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{4}}+\dfrac{1}{\sqrt{4}}-\dfrac{1}{\sqrt{5}}+...+\dfrac{1}{\sqrt{224}}-\dfrac{1}{\sqrt{225}}=\dfrac{\sqrt{2}-1}{2}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{225}}=\dfrac{\sqrt{2}-1}{2}+\dfrac{\sqrt{3}}{3}-\dfrac{1}{15}=\dfrac{3\sqrt{2}+2\sqrt{3}-3}{6}-\dfrac{1}{15}=\dfrac{15\sqrt{2}+10\sqrt{3}-17}{30}\)

17 tháng 8 2017

Câu a :

Áp dụng BĐT \(\dfrac{1}{\sqrt{ab}}>\dfrac{2}{a+b}\left(a\ne b;a,b>0\right)\) ta có :

\(\dfrac{1}{\sqrt{1.1998}}>\dfrac{2}{1+1998}=\dfrac{2}{1999}\)

\(\dfrac{1}{\sqrt{2.1997}}>\dfrac{2}{2+1997}=\dfrac{2}{19999}\)

.......................................................

\(\dfrac{1}{\sqrt{1998.1}}>\dfrac{2}{1998+1}=\dfrac{2}{1999}\)

Cộng tất cả vế với nhau ta được : \(P>2.\dfrac{1998}{1999}\)

\(\Rightarrowđpcm\)

17 tháng 8 2017

Câu a, b sao tính chất cái cuối khác những cái còn lại thế. Vậy sao biết tới đâu thì nó dừng.

a: \(A=\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\right)\cdot\dfrac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\)

\(=\dfrac{x\sqrt{3}}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\cdot\dfrac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)

\(=\dfrac{1}{x-\sqrt{3}}\)

b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\)

\(=x-\sqrt{x}-x-\sqrt{x}+x+1\)

\(=x-2\sqrt{x}+1\)

c: \(C=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)