K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2016

a) Sử dụng công thức \(\frac{1}{\log_ba}=\log_ab\), hơn nữa \(x=2007!\) nên ta có :              \(A=\log_x2+\log_x3+..........\log_x2007\)

    \(=\log_x\left(2.3...2007\right)\)

    \(=\log_xx=1\)

b) Nhận thấy 

\(lg\tan1^o+lg\tan89^o=lg\left(lg\tan1^o.lg\tan89^o\right)=lg1=0\)

Tương tự ta có :

 \(lg\tan2^o+lg\tan88^o=0\)

.................

\(lg\tan44^o+lg\tan46^o=0\)

\(lg\tan45^o=lg1=0\)

Do đó :

\(B=\left(lg\tan1^o+lg\tan89^o\right)+\left(lg\tan2^o+lg\tan88^o\right)+......+lg\tan45^0=0\)

5 tháng 5 2016

Nhận xét : \(lg\tan1^0+lg\tan89^0=lg\left(\tan1^0.\tan89^0\right)=lg1=0\)

                  \(lg\tan2^0+lg\tan88^0=lg\left(\tan1^0.\tan88^0\right)=lg1=0\)

                 ...................................................................................

                 ....................................................................................

Và \(lg\tan45^0=lg1=0\)

Suy ra \(S=lg\tan1^0+lg\tan2^0+lg\tan3^0+......+lg\tan89^0\)

              \(=\left(lg\tan1^0+lg\tan89^0\right)+\left(lg\tan2^0+lg\tan88^0\right)+....+lg\tan45^0\)

Vậy \(S=lg\tan1^0+lg\tan2^0+lg\tan3^0+...+lg\tan89^0=0\)

28 tháng 3 2016

d) Điều kiện x>0. Áp dụng công thức đổi cơ số, ta có :

\(\log_2x+\log_3x+\log_4x=\log_{20}x\)

\(\Leftrightarrow\log_2x+\frac{\log_2x}{\log_23}+\frac{\log_2x}{\log_24}=\frac{\log_2x}{\log_220}\)

\(\Leftrightarrow\log_2x\left(1+\frac{1}{\log_23}+\frac{1}{2}+\frac{1}{\log_220}\right)=0\)

\(\Leftrightarrow\log_2x\left(\frac{3}{2}+\log_22-\log_{20}2\right)=0\)

Ta có \(\frac{3}{2}+\log_22-\log_{20}2>\frac{3}{2}+0-1>0\)

Do đó, từ phương trình trên, ta phải có \(\log_2x=0\) hay \(x=2^0=1\)

Vậy nghiệm duy nhất của phương trình là \(x=1\)

28 tháng 3 2016

c) Điều kiện x>0, đưa về cùng cơ số 5, ta có :

\(\log_5x^3+3\log_{25}x+\log_{\sqrt{25}}\sqrt{x^3}=\frac{11}{2}\)

\(\Leftrightarrow3\log_5x+3\log_{5^2}x+\log_{5^{\frac{3}{2}}}x^{\frac{3}{2}}=\frac{11}{2}\)

\(\Leftrightarrow3\log_5x+3\frac{1}{2}\log_5x+\frac{3}{2}.\frac{2}{3}\log_5x=\frac{11}{2}\)

\(\Leftrightarrow\frac{11}{2}\log_5x=\frac{11}{2}\)

\(\Leftrightarrow\log_5x=1\)

\(\Leftrightarrow x=5^1=5\) thỏa mãn

Vậy phương trình chỉ có 1 nghiệ duy nhất \(x=5\)

11 tháng 5 2016

\(N=lg\left(\tan1^0\right)+lg\left(\tan2^0\right)+....+lg\left(\tan88^0\right)+lg\left(\tan89^0\right)\)

     \(=\left[lg\left(\tan1^0\right)+lg\left(\tan89^0\right)\right]+\left[lg\left(\tan2^0\right)+lg\left(\tan88^0\right)\right]+...+\left[lg\left(\tan44^0\right)+lg\left(\tan46^0\right)\right]+lg\left(\tan45^0\right)\)

     \(=lg\left(\tan1^0.\tan89^0\right)+lg\left(\tan2^0.\tan88^0\right)+...+lg\left(\tan44^0.\tan46^0\right)+lg\left(\tan45^0\right)\)

     \(=lg\left(\tan1^0.\cot1^0\right)+lg\left(\tan2^0.\cot2^0\right)+.....+lg\left(\tan44^0.\cot44^0\right)+lg\left(\tan45^0\right)\)

     \(=lg1+lg1+....+lg1+lg1=0+0+....+0+0=0\)

28 tháng 3 2016

d) Điều kiện \(\begin{cases}x\ne0\\\log_2\left|x\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x\right|\ge\)1

Phương trình đã cho tương đương với :

\(\log_2\left|x\right|^{\frac{1}{2}}-4\sqrt{\log_{2^2}\left|x\right|}-5=0\)

\(\Leftrightarrow\frac{1}{2}\log_2\left|x\right|-4\sqrt{\frac{1}{4}\log_2\left|x\right|}-5=0\)

Đặt \(t=\sqrt{\frac{1}{2}\log_2\left|x\right|}\) \(\left(t\ge0\right)\) thì phương trình trở thành :

\(t^2-4t-5=0\) hay t=-1 V t=5

Do \(t\ge0\) nên t=5

\(\Rightarrow\frac{1}{2}\log_2\left|x\right|=25\Leftrightarrow\log_2\left|x\right|=50\Leftrightarrow\left|x\right|=2^{50}\) Thỏa mãn

Vậy \(x=\pm2^{50}\) là nghiệm của phương trình

28 tháng 3 2016

c) Điều kiện x>0. Phương trình đã cho tương đương với :

\(x^{lg^2x^2-3lgx-\frac{9}{2}}=\left(10^{lgx}\right)^{-2}\)

\(\Leftrightarrow lg^2x^2-3lgx-\frac{9}{2}=-2\)

\(\Leftrightarrow8lg^2x-6lgx-5=0\)

Đặt \(t=lgx\left(t\in R\right)\) thì phương trình trở thành

\(8t^2-6t-5=0\)  hay\(t=-\frac{1}{2}\) V \(t=\frac{5}{4}\)

Với \(t=-\frac{1}{2}\) thì \(lgx=-\frac{1}{2}\Leftrightarrow x=\frac{1}{\sqrt{10}}\)

Với \(t=\frac{5}{4}\) thì \(lgx=\frac{5}{4}\Leftrightarrow x=\sqrt[4]{10^5}\)

Vậy phương trình đã cho có nghiệm \(x=\sqrt[4]{10^5}\) và \(x=\frac{1}{\sqrt{10}}\)

 
11 tháng 5 2016

\(M=lg\left|\log_{\frac{1}{a^3}}\sqrt[5]{a\sqrt{a}}\right|=lg\left|\log_{\frac{1}{a^3}}\sqrt[5]{a.a^{\frac{1}{2}}}\right|=lg\left|\log_{\frac{1}{a^3}}\left(a^{\frac{3}{2}}\right)^{\frac{1}{5}}\right|=lg\left|\log_{a^{-3}}a^{\frac{3}{10}}\right|=lg\left|-\frac{1}{10}=lg\frac{1}{10}=-1\right|\)

27 tháng 2 2016

câu b

<=> lg(2x+4) = lg(|4x-7|)2

<=> 2x+4 = 16x2- 56x + 49  <=> x=2,5 hoặc x= 1,125

11 tháng 11 2019

Đáp án : B.

11 tháng 9 2019

Đáp án B