Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1x2x3x4 + 2x3x4x5 + 3x4x5x6 + .......+n x ( n+1) x (n+2) x (n+3)
4S = 1.2.3.4.(5-1) + 2.3.4.5.(6-2) + ...... + n(n + 1)(n+2)(n+3)[(n + 4) - n]
4S = 1.2.3.4.5 - 1.2.3.4.5 + 2.3.4.5.6 - 2.3.4.5.6 + ..... + n(n+1)(n+2)(n+3)(n + 4)
4S = n( n+1)(n+2)(n+3)
S =\(\frac{\text{n( n+1)(n+2)(n+3)}}{4}\)
Xét ΔABC vuông ở A, theo định lý Pi-ta-go ta được :
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có : AD là phân giác \(\widehat{BAC}\)
\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}\)
hay \(\dfrac{BD}{DC}=\dfrac{6}{8}\)
\(\Rightarrow\dfrac{BD}{6}=\dfrac{DC}{8}=\dfrac{BD+DC}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)
\(\Rightarrow BD=\dfrac{5}{7}.6=\dfrac{30}{7}\left(cm\right)\)
\(\Rightarrow DC=\dfrac{5}{7}.8=\dfrac{40}{7}\left(cm\right)\)
Hình bạn tự kẻ nhé!
Xét tam giác ABC vuông tại A có:
AB2 + AC2 = BC2 ( định lý Pytago )
=> 62 + 82 = BC2
<=> 36 + 64 = BC2
<=> 100 = BC2
<=> BC = 10 (cm) ( vì BC > 0 )
Xét tam giác ABC có: BD là đường pg của tam giác ABC
=> DA / DC = AB / BC
=> DA / ( DA + DC ) = AB/ ( BC + AB )
<=> DA / AC = 3/8
<=> AD / 8 = 3/8
<=> AD = 3 (cm)
Vậy AD = 3 cm.