Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C= \(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
= \(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\) ( viet nguoc lai cho de nhin)
= \(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
= \(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
= \(-\frac{49}{50}\)
C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - .... - 1/3.2 - 1/2.1
\(C=\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+...+\frac{1}{2.1}\right)\)
\(C=\frac{1}{100}-\left(\frac{1}{99}-\frac{1}{100}+\frac{1}{98}-\frac{1}{99}+...+1-\frac{1}{2}\right)\)
\(C=\frac{1}{100}-\left(\frac{1}{100}-\frac{1}{2}\right)=-\frac{1}{2}\)
\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-...-\dfrac{1}{2.1}\\ =\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\\ =\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\\ =\dfrac{1}{100}-\dfrac{99}{100}\\ =\dfrac{-98}{100}\\ =-\dfrac{49}{100}\)
\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(=-\dfrac{49}{50}\)
\(A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}+\frac{1}{100}-1=\frac{1}{50}-1=-\frac{49}{50}\)
1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1
= 1/100 - (1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1)
= 1/100 - (1/1.2 + 1/2.3 + ... + 1/97.98 + 1/98.99 + 1/99.100)
= 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100)
= 1/100 - (1 - 1/100)
= 1/100 - 99/100
= -49/50
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=-\left(1-\frac{1}{100}\right)\)
\(=-\frac{99}{100}\)
A = 1/99 - 1/99.98 - 1/98.97 - ............... - 1/3.2 - 1/2.1
\(A=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
đặt \(B=\frac{1}{99.98}+\frac{1}{97.87}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\)
\(B=1-\frac{1}{99}\)
\(B=\frac{98}{99}\)
\(\Rightarrow A=\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)
a) \(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100.99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
Đặt A = \(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\)
A = \(1-\frac{1}{99}\)
A = \(\frac{98}{99}\)
Thay A vào ta được :
\(\frac{1}{100.99}-\frac{98}{99}=\frac{1}{9900}-\frac{98}{99}=\frac{-9799}{9900}\)
b) \(\frac{\left(1+2+3+...+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-3,6.21\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
Ta thấy biểu thức trong ngoặc thứ ba của tử số có kết quả bằng 0
\(\Rightarrow\)Phân số ấy có kết quả bằng 0