Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}:\sqrt{\dfrac{25}{9}}=\dfrac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}:\dfrac{5}{3}\)
\(=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}.\dfrac{5}{3}=\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1-5\right)}.\dfrac{5}{3}=\dfrac{1-3}{1-5}.\dfrac{5}{3}=\dfrac{1}{2}.\dfrac{5}{3}=\dfrac{5}{6}\)
\(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\div\sqrt{\dfrac{25}{9}}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\div\dfrac{5}{4}\)
=\(\dfrac{2^{10}\cdot3^8\left(1-2\cdot3\right)}{2^{10}\cdot3^8\left(1+5\right)}\div\dfrac{5}{4}\)
=\(\dfrac{1-6}{1+5}\cdot\dfrac{4}{5}\)
=\(-\dfrac{5}{6}\cdot\dfrac{4}{5}\)
=\(-\dfrac{2}{3}\)
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(M=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(M=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)
\(M=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)
\(M=2^{10}\)
\(M=1024\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\times\left(2^{20}+1\right)}{2^{30}\times\left(2^{20}+1\right)}=2^{10}=1024\)
Chúc bạn học tốt ^^
1. \(x^{10}=25x^8\Leftrightarrow x^{10}:x^8=25\Leftrightarrow x^2=25=5^2\Leftrightarrow x=5\)
2. \(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=\frac{2^{40}}{2^{30}}=2^{10}\)
1)\(x^{10}=25x^8\)
\(\Rightarrow x^{10}:x^8=25\)
\(\Rightarrow x^2=5^2\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
2)\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)
\(M=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
= \(\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)=\(\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)=\(\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)=\(\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)=\(\frac{2^{40}}{2^{30}}\)= 210
\(2^5\).\(9^5\).\(2^8\).\(9^8\)
=(\(2^5\).\(2^8\)).(\(9^5\).\(9^8\))
=\(^{2^{13}}\).\(9^{13}\)
=\(^{2.9^{13}}\)
=\(18^{13}\)