K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

Đề câu trả lời trên là:

Tìm x, y, z thuộc Z, biết

a) |x| + |-x|= 3-x

b) x6 −1y =12 

c) 2x = 3y; 5x = 7z và  3x - 7y +5z = 30

24 tháng 7 2018

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

\(\Rightarrow\hept{\begin{cases}\frac{x^2}{4}=\frac{1}{4}\\\frac{y^2}{16}=\frac{1}{4}\\\frac{z^2}{36}=\frac{1}{4}\end{cases}\Rightarrow\hept{\begin{cases}x^2=1\\y^2=4\\z^2=9\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm1\\y=\pm2\\z=\pm3\end{cases}}}\)

28 tháng 7 2019

\(\frac{x}{10}=\frac{y}{5}\Rightarrow\frac{x}{20}=\frac{y}{10}\)

\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{10}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{15}\)

\(\Rightarrow\frac{2x}{40}=\frac{3y}{30}=\frac{z}{15}\)

áp dụng tc của dãy tỉ số = nhau

28 tháng 7 2019

=> x/20=y/10; y/10=z/15

=> x/20=y/10=z/15

từ...áp dụng....

đc : (2x-3y+4z)/(40-30+60)=280/70=4

  => x=..

=> y=...

=> z=...

bạn tự làm nha

15 tháng 7 2019

Nhận xét : Nếu cộng các đẳng thức, ta nhận được:

\(\left(x^4+2x^3-x+\frac{1}{4}\right)+\left(y^4+2y^3-y+\frac{1}{4}\right)=0.\)

Với việc chọn đa thức \(P\left(x\right)=\left(x-a\right)^2\left(x-b\right)^2,\)sau khi khai triển và đồng nhất hệ số với đa thức \(Q\left(x\right)=x^4+2x^3-x+\frac{1}{4}\)ta được: \(a=\frac{-1+\sqrt{3}}{2}\)và \(b=\frac{-1-\sqrt{3}}{2}.\)

Lời giải:  Xét đa thức: \(P\left(x\right)=\left(x-\frac{-1+\sqrt{3}}{2}\right)^2\left(x-\frac{-1-\sqrt{3}}{2}\right)^2,\)

Thấy rằng với mọi \(x\in R\)thì \(P\left(x\right)\)luôn không âm. Suy ra

\(0\le P\left(x\right)+P\left(y\right)=\left(x+2x^3-x+\frac{1}{4}\right)+\left(y^4+2y^3-y+\frac{1}{4}\right)\)

                                       \(=\left(x^4+2y^3-x\right)+\left(y^4+2x^3-y\right)+\frac{1}{4}+\frac{1}{4}\)

                                       \(=-\frac{1}{4}+3\sqrt{3}+\left(-\frac{1}{4}-3\sqrt{3}\right)+\frac{1}{4}+\frac{1}{4}\)

                                       \(=0\)

Vì \(P\left(x\right);P\left(y\right)\)đều không âm nên dấu '=' xảy ra khi và chỉ khi \(P\left(x\right)=P\left(y\right)=0\).

Do đó: \(x,y\in\left\{\frac{-1+\sqrt{3}}{2};\frac{-1-\sqrt{3}}{2}\right\}.\)Thay vào phương trình và dùng phép thử trực tiếp, ta thu nhận được:

\(x=\frac{-1-\sqrt{3}}{2},y=\frac{-1+\sqrt{3}}{2}.\)