Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì (x-2016)^2016 >= 0 vs mọi x
(y-2017)^2018>= 0 vs mọi y
/x+y-z/ >= 0 vs mọi x,y,z
mà (x-2016)^2016+(y-2017)^2018+/x-y+z/=\(\hept{\begin{cases}\left(x-2016\right)^{2016}=0\\^{\left(-2017\right)^{2018}}=0\\x+y-z=0\end{cases}}\)0 nên \(\hept{\begin{cases}x-2016=0\\y-2017=0\\x+y-z\end{cases}}\)\(\hept{\begin{cases}x=2016\\y=2017\\x+y-z=0\end{cases}}\)
mà x+y=2016+2017=4033
\(\Rightarrow\)4033-z=0
z=4033
vậy x=2016 y=2017 z=4033
Đặt \(k=\frac{x}{8}=\frac{y}{3}=\frac{z}{10}\)
Ta có: \(x=8k;y=3k;z=10k\) (*)
Thay vào đẳng thức \(xy+yz+zx=206\) ta được:
\(8k.3k+3k.10k+10k.8k=206\)
\(\Leftrightarrow24k^2+30k^2+80k^2=206\)
\(\Leftrightarrow24k^2+30k^2+80k^2=206\)
\(\Rightarrow k=\pm\sqrt{\frac{103}{67}}\)
Thay k vào (*) tính được x, y, z
x×y=-30 ,y×z=42
=>x×y/y×z=-30÷42
=>x/z=-5/7
=>x/-5=z/7=z-x/7+5=-12/12=-1
=>x=-5×-1=5
z=7×-1=-7
=>5y=-30
=>y=-6
Vậy x=5,y==
\(\left(xy\right):\left(yz\right)=\frac{2}{3}:0,6\Rightarrow\frac{x}{z}=\frac{10}{9}\)=> \(x=\frac{10}{9}z\Rightarrow\frac{10}{9}z.z=0,625\Rightarrow z^2=\frac{9}{16}\Rightarrow z=\pm\frac{3}{4}\)
\(\left(yz\right):\left(zx\right)=0,6:0,625\Rightarrow\frac{y}{x}=\frac{24}{25}\)
Với z=3/4 => x, y
Với z=-3/4 => x,y
Câu b làm tương tự nhé :)
Ta có:
x.y = z (1)
y.z = 4.x (2)
x.z = 4.y (3)
Từ (1), (2) và (3) => (x.y).(y.z).(x.z) = z.(4.x).(4.y)
=> (x.y.z)2 = 16.x.y.z
=> (x.y.z)2 - 16.x.y.z = 0
=> x.y.z.(x.y.z - 16) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x.y.z=0\\x.y.z-16=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x.y.z=0\\x.y.z=16\end{array}\right.\)
+ Với x.y.z = 0 => \(\left[\begin{array}{nghiempt}x=0\\y=0\\z=0\end{array}\right.\)
+ Với x.y.z = 16 => x.y = \(\frac{16}{z}\) = z (từ (1)) => z2 = 16 => \(z\in\left\{4;-4\right\}\)
Tương tự với (2) và (3) ta được 4 cặp giá trị (x;y;z) tương ứng thỏa mãn là: (2;2;4) ; (-2;-2;4) ; (-2;2;-4) ; (2;-2;-4)
Vậy ...
Cho hỏi x,y,z có nguyên k ạ
Vì |x - y| + |y - z| + |z - x| = 2017
=> x,y,z có vai trò như nhau nên không mất tính tổng quát
Giả sử x \(\ge\)y\(\ge\)z
=> x - y \(\ge\)0
y - z \(\ge\)0
z - x \(\le\)0
=> |x - y| + |y - z| + |z - x| = x - y + y - z + x - z
=> 2017 = 2(x - z)
Có : 2(x - z) luôn chẵn
Mà 2017 lẻ
=> Không có x,y,z thỏa mãn đề